
Sun Microsystems
September 2008

The JAviator: Time-Portable 
Programming in Java

Christoph Kirsch
Universität Salzburg



javiator.cs.uni-salzburg.at#

• Silviu Craciunas* (Control Systems)

• Harald Röck (Operating Systems)

• Rainer Trummer (Frame, Electronics)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://javiator.cs.uni-salzburg.at/
http://javiator.cs.uni-salzburg.at/


The JAviator
javiator.cs.uni-salzburg.at



© C. Kirsch 2008

Quad-Rotor Helicopter





Gyro

Propulsion



Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController



© C. Kirsch 2008



© C. Kirsch 2008



© C. Kirsch 2008



© C. Kirsch 2008

Oops



© C. Kirsch 2008

Flight Control



© C. Kirsch 2008

Free Flight



© C. Kirsch 2008

Yaw Control



© C. Kirsch 2008

[AIAA GNC 2008]



© C. Kirsch 2008

Time-Portable Programming

TiptoeExotasks



Outline

1. Time-Portable Programming

2. Exotasks

3. Tiptoe



© C. Kirsch 2008

Process Action

time

action

arrives completes

execution
time



© C. Kirsch 2008

Concurrency

time

action

arrives
completes

concurrent action

resumed
response time

completes
arrives

preempted



© C. Kirsch 2008

Execution and Response

time

action

arrives
started

preempted
resumed

completes

response time

execution
time



© C. Kirsch 2008

Time



© C. Kirsch 2008

Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time



© C. Kirsch 2008

Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities



© C. Kirsch 2008

Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute the action in the presence of 
concurrent activities



© C. Kirsch 2008

Time-Portable Programming



© C. Kirsch 2008

Time-Portable Programming

• If the response times of the process actions 
of a program are maintained across different 
hardware platforms (execution) and software 
workloads (concurrency), we say that the 
program is time-portable



© C. Kirsch 2008

Time-Portable Programming

• If the response times of the process actions 
of a program are maintained across different 
hardware platforms (execution) and software 
workloads (concurrency), we say that the 
program is time-portable

• Time-portable programming specifies and 
implements upper AND lower bounds on 
response times of process actions



© C. Kirsch 2008

Correctness



© C. Kirsch 2008

Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.



© C. Kirsch 2008

Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis



© C. Kirsch 2008

Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is 
determined by the entire system of processes 
executing on a processor.



© C. Kirsch 2008

Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is 
determined by the entire system of processes 
executing on a processor.

‣ Real-time scheduling theory



© C. Kirsch 2008

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]



© C. Kirsch 2008

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Logical Execution Time



© C. Kirsch 2008

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Logical Execution Time

Hierarchy, Refinement



© C. Kirsch 2008

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Logical Execution Time

Hierarchy, Refinement

Java!



Outline

1. Time-Portable Programming

2. Exotasks

3. Tiptoe



Exotask Team#

• J. Auerbach, D.F. Bacon, V.T. Rajan (IBM Research) 

• Daniel Iercan (TU Timisoara, Romania)

• Silviu Craciunas* (Univ. of Salzburg, Austria)

• Harald Röck (Univ. of Salzburg, Austria)

• Rainer Trummer (Univ. of Salzburg, Austria)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15



Exotasks



Exotasks

• Alternative to Java threads



Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset



Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC



Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC

• Communicate by message-passing Java objects



Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC

• Communicate by message-passing Java objects

• Isolated in time: HTL semantics



Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC

• Communicate by message-passing Java objects

• Isolated in time: HTL semantics

• Other semantics are possible: scheduler plugins



© C. Kirsch 2008

Visual Syntax



© C. Kirsch 2008

Multi-Mode Programming



© C. Kirsch 2008

Eclipse Plugin



© C. Kirsch 2008

!"#$%&'()&'*+$

!"#$%&'(,-./#0'&

1&/0"2',-./#0'&

03(45
67

8'+0&'99"&

1&/0"2')&'*+$

:77

8'((*+/;#0/'+<=/0><0>"<?&'*+$<40#0/'+

9'=@9"."9<;'+0&'9<#+$<;'((*+/;#0/'+<=/0><0>"<,-./#0'&

A&'(,-./#0'&

99;B0#0"

0',#./#0'&

A&'()&'*+$

!"#$%&!'((")*+,--.)'+#(,!*')/(#)+".)./"$*+,--.)'+#(,!*')/(#)+"

:CD

8'(E*0"B0#0"

HTL Semantics



© C. Kirsch 2008

Performance Histogram

15000 15983 16966 17949 18932 19915 20898 21881 22864 23847 24830
 

1

2

5

1 0

2 0

5 0

100

200

500

1000
C

ou
nt

 (l
og

)

<15000 >25000

[TECS 2008]

{

~1ms

@256KB/s



Outline

1. Time-Portable Programming

2. Exotasks

3. Tiptoe



tiptoe.cs.uni-salzburg.at#

• Silviu Craciunas* (Programming Model)

• Hannes Payer* (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/


© C. Kirsch 2008

Process A

Kernel

Memory

Process B

I/OCPU



© C. Kirsch 2008

Example



© C. Kirsch 2008

Example

• Consider a process that reads a video 
stream from a network connection, 
compresses it, and stores it on disk, all in 
real time



© C. Kirsch 2008

Example

• Consider a process that reads a video 
stream from a network connection, 
compresses it, and stores it on disk, all in 
real time

• The process periodically adapts the frame 
rate, allocates memory, receives frames, 
compresses them, writes the result to disk, 
and finally deallocates memory to prepare 
for the next iteration



© C. Kirsch 2008

Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);



© C. Kirsch 2008

Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);

Workload Parameter



© C. Kirsch 2008

[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) (or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and 
predictable in constant time



© C. Kirsch 2008

Tiptoe Programming Model



© C. Kirsch 2008

Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their workload parameters



© C. Kirsch 2008

Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their workload parameters

• The execution time is the time it takes to 
execute an action in the absence of 
concurrent activities



© C. Kirsch 2008

Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their workload parameters

• The execution time is the time it takes to 
execute an action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute an action in the presence of 
concurrent activities



©
 C

. K
ir

sc
h 

20
08

Response-Time Function

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e 
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)



©
 C

. K
ir

sc
h 

20
08

Execution-Time Function

Bad

fE(w)

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e 
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired concurrent performance actual isolated performance

fR(w)



© C. Kirsch 2008

Utilization Function:

fE(w)
fR(w)

fU(w) =

here, we have:
fU(w) = 10% (for w>0)



© C. Kirsch 2008

Throughput

fR(1 frame) = 4ms (250fps)
...

fR(10 frames) = 40ms (250fps)
...

fR(25 frames) = 100ms (250fps)



© C. Kirsch 2008

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e 
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Scheduled Response Time

Bad

fU(w) = 10%

desired concurrent performance actual isolated performance

fS(10)

fR(w)

fE(w)



∀w. fS(w) ≤ fR(w) ?



© C. Kirsch 2008

Scheduling and Admission



© C. Kirsch 2008

Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?



© C. Kirsch 2008

Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes



© C. Kirsch 2008

Just use EDF, or not?
action arrives

fR(10)
deadline

fE(10)

action completes
fS(10)



© C. Kirsch 2008

Virtual Periodic Resource

π
λ

π
λ

π
λ

π
λ

π
λ

limit: λ
period: π
utilization: λ / π



© C. Kirsch 2008

Tiptoe Process Model



© C. Kirsch 2008

Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources



© C. Kirsch 2008

Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources

• Each process action of a Tiptoe process 
uses exactly one virtual periodic resource 
declared by the process



©
 C

. K
ir

sc
h 

20
08

Refined Example

dR

dE

9.8 ms

100 mstime(ms)

dR = 4 ms

number of frames

dE = 200µs

cU = 10%

fE(w) = 0.4w + 0.2

fR(w) = 4w + 4

0 4 8 12 16 20 24

1



© C. Kirsch 2008

Here, we have again
fU(w) = 10% (for w>0)

fR(1 frame) = 8ms but only 125fps
...

fR(4 frames) = 20ms yields 200fps
...

fR(24 frames) = 100ms yet 240fps



©
 C

. K
ir

sc
h 

20
08

fR(4 frames) = 20ms
λ = 200μs; π = 2ms

}

λ

0 1 2 3 4

time(ms)

fR

π

number of frames

4

8

16

20

12

2

2



© C. Kirsch 2008

Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue



©
 C

. K
ir

sc
h 

20
08

list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes   t: number of time instants



© C. Kirsch 2008

50 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
bitmap_array_avg
list_avg
matrix_avg

50 150 250 350 450 550 650

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 bitmap_array_max

list_max
matrix_max

50 150 250 350 450 550 650

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

bitmap_array_stddev
list_stddev
matrix_stddev

Max

Scheduler Overhead

Average Jitter



© C. Kirsch 2008

0 33 65 98 131 180 229 278 327

5

20

100

500

2000

10000

50000

200000

1000000

0 33 65 98 130 179 228 276 325

5

20

100

500

2000

10000

50000

200000

1000000

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List Array Matrix

Execution Time Histograms



© C. Kirsch 2008

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List
Releases per Instant

Process Release Dominates

0 73 146 255 365 474 584 693

5

20

100

500

2000

10000

50000

200000

1000000



©
 C

. K
ir

sc
h 

20
08

Memory Overhead

2
0

2
5

2
10

2
15

2
20

matrix

tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage 750 processes



Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem



Thank you


