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Oops
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Flight Control
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Free Flight
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Yaw Control
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[AIAA GNC 2008]
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Time-Portable Programming

TiptoeExotasks
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• If the response times of the process actions 
of a program are maintained across different 
hardware platforms (execution) and software 
workloads (concurrency), we say that the 
program is time-portable
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Time-Portable Programming

• If the response times of the process actions 
of a program are maintained across different 
hardware platforms (execution) and software 
workloads (concurrency), we say that the 
program is time-portable

• Time-portable programming specifies and 
implements upper AND lower bounds on 
response times of process actions
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Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is 
determined by the entire system of processes 
executing on a processor.

‣ Real-time scheduling theory
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Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]
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Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Logical Execution Time

Hierarchy, Refinement

Java!
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Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC

• Communicate by message-passing Java objects

• Isolated in time: HTL semantics

• Other semantics are possible: scheduler plugins
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Visual Syntax
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Multi-Mode Programming
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Eclipse Plugin
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Performance Histogram
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Process A
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Process B

I/OCPU
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Example

• Consider a process that reads a video 
stream from a network connection, 
compresses it, and stores it on disk, all in 
real time

• The process periodically adapts the frame 
rate, allocates memory, receives frames, 
compresses them, writes the result to disk, 
and finally deallocates memory to prepare 
for the next iteration
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Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);
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Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);

Workload Parameter
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[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) (or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and 
predictable in constant time
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execution time and response time in terms 
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• The execution time is the time it takes to 
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concurrent activities
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Execution-Time Function
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Utilization Function:

fE(w)
fR(w)

fU(w) =

here, we have:
fU(w) = 10% (for w>0)
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Throughput

fR(1 frame) = 4ms (250fps)
...

fR(10 frames) = 40ms (250fps)
...

fR(25 frames) = 100ms (250fps)
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∀w. fS(w) ≤ fR(w) ?
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• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?
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Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes
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Just use EDF, or not?
action arrives

fR(10)
deadline

fE(10)

action completes
fS(10)
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Virtual Periodic Resource
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Tiptoe Process Model
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources

• Each process action of a Tiptoe process 
uses exactly one virtual periodic resource 
declared by the process
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Refined Example
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Here, we have again
fU(w) = 10% (for w>0)

fR(1 frame) = 8ms but only 125fps
...

fR(4 frames) = 20ms yields 200fps
...

fR(24 frames) = 100ms yet 240fps
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fR(4 frames) = 20ms
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes   t: number of time instants
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Memory Overhead
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Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem
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