
UC Berkeley
January 2009

Time-Portable Programming
the JAviator in the Tiptoe VM

Christoph Kirsch
Universität Salzburg

The JAviator
javiator.cs.uni-salzburg.at

javiator.cs.uni-salzburg.at#

• Silviu Craciunas* (Control Systems)

• Harald Röck (Operating Systems)

• Rainer Trummer (Frame, Electronics)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://javiator.cs.uni-salzburg.at/
http://javiator.cs.uni-salzburg.at/

© C. Kirsch 2009

Quad-Rotor Helicopter

Gyro

Propulsion

Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController

© C. Kirsch 2009

© C. Kirsch 2009

© C. Kirsch 2009

[AIAA GNC 2008]

© C. Kirsch 2009

Indoor Flight
STARMAC Controller

© C. Kirsch 2009

Outdoor Flight
STARMAC Controller

© C. Kirsch 2009

Outdoor Flight
Salzburg Controller

Outline

1. Time-Portable Programming

2. Tiptoe VM Scheduler

3. Tiptoe VM Memory Management

© C. Kirsch 2009

Process Action

time

action

arrives completes

execution
time

© C. Kirsch 2009

Concurrency

time

action

arrives
completes

concurrent action

resumed
response time

completes
arrives

preempted

© C. Kirsch 2009

Time
• The temporal behavior of a process action is

characterized by its execution time and its
response time

• The execution time is the time it takes to
execute the action in the absence of
concurrent activities

• The response time is the time it takes to
execute the action in the presence of
concurrent activities

© C. Kirsch 2009

Time-Portable Programming

• Time-portable programming specifies and
implements upper AND lower bounds on
response times of process actions

• A program is time-portable if the response
times of its process actions are maintained
across different hardware platforms and
software workloads

• The difference ε between upper and lower
bounds is its “degree of time portability”

© C. Kirsch 2009

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

© C. Kirsch 2009

Tiptoe: Bare-Metal VM

• OS vs. VM = Processes vs. Processors

• Tiptoe is a VM, will be a kernel-based hypervisor

• Tiptoe virtualizes embedded processors, byte
code interpreters in real time

• Tiptoe controls throughput and latency of CPU,
memory, and I/O

• I/O is multiplexed onto a collision-free, point-to-
point Ethernet link to an I/O host

Outline

1. Time-Portable Programming

2. Tiptoe VM Scheduler

3. Tiptoe VM Memory Management

tiptoe.cs.uni-salzburg.at#

• Silviu Craciunas* (Programming Model)

• Hannes Payer* (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

© C. Kirsch 2009

Variable-Bandwidth Servers
[submitted]

• Tiptoe uses variable-bandwidth servers (VBS)

• VBS generalize constant-bandwidth servers (CBS)

• A CBS executes a process for λ units of time
every π units of time

• The pair (λ,π) is called a virtual periodic resource

• A VBS merely has a utilization bound (bandwidth
cap) in percentage of CPU time

© C. Kirsch 2009

Result: Programmable
Temporal Isolation

• A process executing on a VBS can switch (from
one process action to the next) to any virtual
periodic resource with a CPU utilization λ/π
less or equal to the VBS’ utilization bound

• Theorem:

‣ The response times of any given process
action of any given process can vary at most
by π, if the sum of the utilization bounds of
all VBS in the system is less or equal to 100%

© C. Kirsch 2009

The smaller the π
the smaller the ε may be,

that is, the higher the
“degree of time portability”

but also
the higher the

scheduling overhead

© C. Kirsch 2009

Admission and Scheduling

• Process admission:

• How do we efficiently test schedulability
of newly arriving processes

• Process scheduling:

• How do we efficiently schedule
processes on the level of individual
process actions?

© C. Kirsch 2009

Scheduling Algorithm

• maintains a queue of ready processes ordered
by deadline and a queue of blocked processes
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them
from one queue to another queue

© C. Kirsch 2009

50 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
bitmap_array_avg
list_avg
matrix_avg

50 150 250 350 450 550 650

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 bitmap_array_max

list_max
matrix_max

50 150 250 350 450 550 650

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

bitmap_array_stddev
list_stddev
matrix_stddev

Max

Scheduler Overhead

Average Jitter

© C. Kirsch 2009

0 33 65 98 131 180 229 278 327

5

20

100

500

2000

10000

50000

200000

1000000

0 33 65 98 130 179 228 276 325

5

20

100

500

2000

10000

50000

200000

1000000

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List Array Matrix

Execution Time Histograms

©
 C

. K
ir

sc
h

20
09

Memory Overhead

2
0

2
5

2
10

2
15

2
20

matrix

tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage 750 processes

Outline

1. Time-Portable Programming

2. Tiptoe VM Scheduler

3. Tiptoe VM Memory Management

© C. Kirsch 2009

“Compact-Fit”
[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) (or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and
predictable in constant time

© C. Kirsch 2009

The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space

© C. Kirsch 2009

Partition Memory into Pages

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

© C. Kirsch 2009

Partition Pages into Blocks

Size-Class for
Objects =< 32

© C. Kirsch 2009

Size-Classes

Size-Class for
64 < Objects =< 128

Size-Class for
32 < Objects =< 64

©
 C

. K
ir

sc
h

20
09

©
 C

. K
ir

sc
h

20
09

Objects =< 32 Objects =< 128Objects =< 64

2

1

0

1

0

3

2

1

0

Invariant: Size-Class Compact

©
 C

. K
ir

sc
h

20
09

just move ‘last’ object

2

1

0

3

2

1

0

“Compact-Fit”
(Bounded Compaction)

Objects =< 32 Objects =< 128Objects =< 64

1

0

©
 C

. K
ir

sc
h

20
09

©
 C

. K
ir

sc
h

20
09

2

1

0

3

2

1

0

Partial Compaction

Objects =< 32 Objects =< 128Objects =< 64

1

0

©
 C

. K
ir

sc
h

20
09

Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem

Thank you

