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Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute the action in the presence of 
concurrent activities
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Time-Portable Programming

• Time-portable programming specifies and 
implements upper AND lower bounds on 
response times of process actions

• A program is time-portable if the response 
times of its process actions are maintained 
across different hardware platforms and 
software workloads

• The difference ε between upper and lower 
bounds is its “degree of time portability”
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Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]
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Tiptoe: Bare-Metal VM

• OS vs. VM = Processes vs. Processors

• Tiptoe is a VM, will be a kernel-based hypervisor

• Tiptoe virtualizes embedded processors, byte 
code interpreters in real time

• Tiptoe controls throughput and latency of CPU, 
memory, and I/O

• I/O is multiplexed onto a collision-free, point-to-
point Ethernet link to an I/O host
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Variable-Bandwidth Servers
[submitted]

• Tiptoe uses variable-bandwidth servers (VBS)

• VBS generalize constant-bandwidth servers (CBS)

• A CBS executes a process for λ units of time 
every π units of time

• The pair (λ,π) is called a virtual periodic resource

• A VBS merely has a utilization bound (bandwidth 
cap) in percentage of CPU time
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Result: Programmable 
Temporal Isolation

• A process executing on a VBS can switch (from 
one process action to the next) to any virtual 
periodic resource with a CPU utilization λ/π 
less or equal to the VBS’ utilization bound

• Theorem:

‣ The response times of any given process 
action of any given process can vary at most 
by π, if the sum of the utilization bounds of 
all VBS in the system is less or equal to 100%
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The smaller the π
the smaller the ε may be,

that is, the higher the
“degree of time portability”

but also
the higher the

scheduling overhead
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Admission and Scheduling

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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Memory Overhead
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“Compact-Fit”
[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) ( or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and 
predictable in constant time
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The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space
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Partition Memory into Pages
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Partition Pages into Blocks

Size-Class for
Objects =< 32
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Size-Classes

Size-Class for
64 < Objects =< 128

Size-Class for
32 < Objects =< 64
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Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem
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