
CHESS Seminar, UC Berkeley, November 2010

Scal☠: Non-Linearizable Computing
Breaks the Scalability Barrier

Christoph Kirsch, Hannes Payer, Harald Röck
Universität Salzburg

©
 C

. K
ir

sc
h

20
10

Multicore Scalability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

Ideal 24-Core Performance

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

Actual Lock-free FIFO Queue

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

k-Linearizable

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

Semantics vs. Scalability

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g

e
 n

u
ll

re
tu

rn
s/

th
re

a
d

 (
lo

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

Best Trade-off

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g

e
 n

u
ll

re
tu

rn
s/

th
re

a
d

 (
lo

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

2-random k=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

©
 C

. K
ir

sc
h

20
10

History

•a history is a finite sequence of invocations
and responses of operations

• an operation is atomic if its invocation is
immediately followed by its response

• an operation P1 precedes an operation P2 if
P1‘s response happens before P2‘s invocation

tentially be performed concurrently and in parallel without causing
contention. In Scal different types of linearizable data structures
can be implemented as k-linearizable data structures. In particu-
lar, the synchronization mechanism of the original data structure
is orthogonal to Scal. Note that k and the select function can be
configured by the programmer at compile time or online with the
help of performance counters. For example, a select function may
be chosen with k = 1 under low contention and with increasing k
as contention increases. Scal provides the same interface as the
original data structures and allows to express concurrency just in
the variable k, which may result in a software engineering benefit.
Programmers do not need to worry about complex implementation
techniques to improve the scalability of data structures [15].

We claim the following contributions: 1. The notion of k-linear-
izability and a set of load balancing algorithms for trading off ad-
herence to data structure semantics and scalability. 2. The design
of Scal that provides k-linearizability for concurrent data structures
using load balancing select functions and partial data structures. 3.
The implementation of Scal that consists of various load balancing
select functions and data structures which can be arbitrarily com-
bined. 4. An evaluation of Scal and a detailed analysis of its com-
ponents. The results of the experiments confirm that Scal shows in
the presented benchmarks positive scalability for concurrent data
structures that typically do not scale under high contention.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the notion of k-linearizability and its properties. In Section 3
we present the generic structure of Scal as well as different select
functions and data structures. In Section 4 we discuss related work.
Experimental results are presented and discussed in Section 5. The
conclusion is in Section 6.

2. K-LINEARIZABILITY

The definition of k-linearizability is based on the original defini-
tions of sequentiality and linearizability [11]. Sequentiality and
linearizability are correctness conditions that determine in which
order concurrent operations on a shared data structure may be per-
formed such that each operation appears to take effect instanta-
neously. We consider data structures such as stacks and queues
that provide an insert and a remove operation, and store elements
in a given order determined by an ordering condition such as last-
in first-out (LIFO), first-in first-out (FIFO), or highest priority first.
We focus on stacks and queues here since k-linearizability has an
effect on the order in which elements are stored that is monotone in
k, i.e., the larger the k the more the elements may be out-of-order,
cf. Proposition 1. Monotonicity establishes a bounded relationship
between adherence to data structure semantics and k-linearizability
and thus scalability. However, note that, similar to the definition of
linearizability, our definition of k-linearizability works for any con-
current data structure. In the following we discuss correctness and
ordering conditions in more detail and then introduce the definition
of k-linearizability.

We use the concept of a history H to model the execution of a con-
current system. A history H is a finite sequence of invocation and
response events of operations performed by concurrent threads on
a shared data structure. An operation op0 precedes operation op1,
if the response event of op0 happens before the invocation of op1.
The sequential order in which a single thread performs operations
is called program order. We omit further details and refer the reader
for a formal definition of a history as well as for how histories are
verified to be sequential or linearizable to [11, 10].

Figure 1: History H1

Let Σ be the set of possible states of a shared data structure after
applying a history H to an empty instance of the shared data struc-
ture using a correctness condition ξ and an ordering condition o.
The states in Σ are sequences of elements which may be stored
in the data structure instance after performing a series of concur-
rent operations. Elements in the sequences are ordered from left to
right. For example, using ordering condition FIFO an insert opera-
tion adds an element to the right end of the sequence and a remove
operation removes the left-most element of the sequence. Let func-
tion Φ : H ×Ξ×Ω → Π return a set Σ ∈ Π of possible states for a
history H ∈H , a correctness condition ξ∈Ξ, an ordering condition
o ∈ Ω, where H , Ξ, Ω, and Π are the sets of histories, correctness
conditions, ordering conditions, and possible states of a shared data
structure, respectively.

Sequentiality requires operations performed by a single thread on
a shared data structure to take effect in program order. The relative
order of operations performed by different threads does not need to
be kept. A history H is sequential if the first event of H is an invoca-
tion that is immediately followed by a matching response, and each
response is immediately followed by an invocation (except possibly
the last one). Figure 1 shows a history H1 of two threads perform-
ing insert and remove operations on a shared data structure. The
possible states of a shared data structure after applying history H1,
correctness condition sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are

Φ(H1,sequentiality,FIFO) = {< A2,B1 >,< B1,A2 >}.

The remove operation of history H1 returns element A1 which must
therefore be the first element stored in the data structure instance.
Elements A2 and B1 may be stored in arbitrary order since the order
of operations performed by different threads does not need to be
kept.

Linearizability requires that each data structure operation takes ef-
fect at some time instant between its invocation and response. A
history H is linearizable if there is a sequential history S which im-
plements H such that, if operation op0 precedes operation op1 in
H, then the same is true in S. Hence, operations in a linearizable
history which overlap in time may take effect in arbitrary order
whereas non-overlapping operations must take effect in sequential
order. Let us consider again history H1 of Figure 1. The insert
operations of elements B1 and the remove operation which returns
element A1 overlap in time and may therefore take effect in arbi-
trary order whereas the insert operations of elements A2 and B1
do not overlap in time and therefore must take effect in sequential
order. Thus there is one possible state of a shared data structure
after applying history H1, correctness condition linearizability, and
ordering condition FIFO to an empty instance of the shared data
structure:

Φ(H1, linearizability,FIFO) = {< A2,B1 >}.

2

©
 C

. K
ir

sc
h

20
10

Sequentiality

• a sequential history provides atomicity while
preserving single-threaded precedence

• e.g. ins(A1)-ins(A2)-ins(B1)-rem() is sequential
• in fact, any atomic occurrence of ins(B1) is
• however, ins(B1)-ins(A1)-ins(A2)-rem() is not

serializable for, e.g. a FIFO queue, if A1=rem()

tentially be performed concurrently and in parallel without causing
contention. In Scal different types of linearizable data structures
can be implemented as k-linearizable data structures. In particu-
lar, the synchronization mechanism of the original data structure
is orthogonal to Scal. Note that k and the select function can be
configured by the programmer at compile time or online with the
help of performance counters. For example, a select function may
be chosen with k = 1 under low contention and with increasing k
as contention increases. Scal provides the same interface as the
original data structures and allows to express concurrency just in
the variable k, which may result in a software engineering benefit.
Programmers do not need to worry about complex implementation
techniques to improve the scalability of data structures [15].

We claim the following contributions: 1. The notion of k-linear-
izability and a set of load balancing algorithms for trading off ad-
herence to data structure semantics and scalability. 2. The design
of Scal that provides k-linearizability for concurrent data structures
using load balancing select functions and partial data structures. 3.
The implementation of Scal that consists of various load balancing
select functions and data structures which can be arbitrarily com-
bined. 4. An evaluation of Scal and a detailed analysis of its com-
ponents. The results of the experiments confirm that Scal shows in
the presented benchmarks positive scalability for concurrent data
structures that typically do not scale under high contention.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the notion of k-linearizability and its properties. In Section 3
we present the generic structure of Scal as well as different select
functions and data structures. In Section 4 we discuss related work.
Experimental results are presented and discussed in Section 5. The
conclusion is in Section 6.

2. K-LINEARIZABILITY

The definition of k-linearizability is based on the original defini-
tions of sequentiality and linearizability [11]. Sequentiality and
linearizability are correctness conditions that determine in which
order concurrent operations on a shared data structure may be per-
formed such that each operation appears to take effect instanta-
neously. We consider data structures such as stacks and queues
that provide an insert and a remove operation, and store elements
in a given order determined by an ordering condition such as last-
in first-out (LIFO), first-in first-out (FIFO), or highest priority first.
We focus on stacks and queues here since k-linearizability has an
effect on the order in which elements are stored that is monotone in
k, i.e., the larger the k the more the elements may be out-of-order,
cf. Proposition 1. Monotonicity establishes a bounded relationship
between adherence to data structure semantics and k-linearizability
and thus scalability. However, note that, similar to the definition of
linearizability, our definition of k-linearizability works for any con-
current data structure. In the following we discuss correctness and
ordering conditions in more detail and then introduce the definition
of k-linearizability.

We use the concept of a history H to model the execution of a con-
current system. A history H is a finite sequence of invocation and
response events of operations performed by concurrent threads on
a shared data structure. An operation op0 precedes operation op1,
if the response event of op0 happens before the invocation of op1.
The sequential order in which a single thread performs operations
is called program order. We omit further details and refer the reader
for a formal definition of a history as well as for how histories are
verified to be sequential or linearizable to [11, 10].

Figure 1: History H1

Let Σ be the set of possible states of a shared data structure after
applying a history H to an empty instance of the shared data struc-
ture using a correctness condition ξ and an ordering condition o.
The states in Σ are sequences of elements which may be stored
in the data structure instance after performing a series of concur-
rent operations. Elements in the sequences are ordered from left to
right. For example, using ordering condition FIFO an insert opera-
tion adds an element to the right end of the sequence and a remove
operation removes the left-most element of the sequence. Let func-
tion Φ : H ×Ξ×Ω → Π return a set Σ ∈ Π of possible states for a
history H ∈H , a correctness condition ξ∈Ξ, an ordering condition
o ∈ Ω, where H , Ξ, Ω, and Π are the sets of histories, correctness
conditions, ordering conditions, and possible states of a shared data
structure, respectively.

Sequentiality requires operations performed by a single thread on
a shared data structure to take effect in program order. The relative
order of operations performed by different threads does not need to
be kept. A history H is sequential if the first event of H is an invoca-
tion that is immediately followed by a matching response, and each
response is immediately followed by an invocation (except possibly
the last one). Figure 1 shows a history H1 of two threads perform-
ing insert and remove operations on a shared data structure. The
possible states of a shared data structure after applying history H1,
correctness condition sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are

Φ(H1,sequentiality,FIFO) = {< A2,B1 >,< B1,A2 >}.

The remove operation of history H1 returns element A1 which must
therefore be the first element stored in the data structure instance.
Elements A2 and B1 may be stored in arbitrary order since the order
of operations performed by different threads does not need to be
kept.

Linearizability requires that each data structure operation takes ef-
fect at some time instant between its invocation and response. A
history H is linearizable if there is a sequential history S which im-
plements H such that, if operation op0 precedes operation op1 in
H, then the same is true in S. Hence, operations in a linearizable
history which overlap in time may take effect in arbitrary order
whereas non-overlapping operations must take effect in sequential
order. Let us consider again history H1 of Figure 1. The insert
operations of elements B1 and the remove operation which returns
element A1 overlap in time and may therefore take effect in arbi-
trary order whereas the insert operations of elements A2 and B1
do not overlap in time and therefore must take effect in sequential
order. Thus there is one possible state of a shared data structure
after applying history H1, correctness condition linearizability, and
ordering condition FIFO to an empty instance of the shared data
structure:

Φ(H1, linearizability,FIFO) = {< A2,B1 >}.

2

©
 C

. K
ir

sc
h

20
10

Serializability

• a history H is serializable with respect to an
object O if H has a sequential history that
preserves the semantics of O

• ins(A1)-ins(B1)-ins(A2)-A1=rem(): <B1,A2>
ins(A1)-ins(A2)-ins(B1)-A1=rem(), and
ins(A1)-ins(A2)-A1=rem()-ins(B1): <A2,B1>

tentially be performed concurrently and in parallel without causing
contention. In Scal different types of linearizable data structures
can be implemented as k-linearizable data structures. In particu-
lar, the synchronization mechanism of the original data structure
is orthogonal to Scal. Note that k and the select function can be
configured by the programmer at compile time or online with the
help of performance counters. For example, a select function may
be chosen with k = 1 under low contention and with increasing k
as contention increases. Scal provides the same interface as the
original data structures and allows to express concurrency just in
the variable k, which may result in a software engineering benefit.
Programmers do not need to worry about complex implementation
techniques to improve the scalability of data structures [15].

We claim the following contributions: 1. The notion of k-linear-
izability and a set of load balancing algorithms for trading off ad-
herence to data structure semantics and scalability. 2. The design
of Scal that provides k-linearizability for concurrent data structures
using load balancing select functions and partial data structures. 3.
The implementation of Scal that consists of various load balancing
select functions and data structures which can be arbitrarily com-
bined. 4. An evaluation of Scal and a detailed analysis of its com-
ponents. The results of the experiments confirm that Scal shows in
the presented benchmarks positive scalability for concurrent data
structures that typically do not scale under high contention.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the notion of k-linearizability and its properties. In Section 3
we present the generic structure of Scal as well as different select
functions and data structures. In Section 4 we discuss related work.
Experimental results are presented and discussed in Section 5. The
conclusion is in Section 6.

2. K-LINEARIZABILITY

The definition of k-linearizability is based on the original defini-
tions of sequentiality and linearizability [11]. Sequentiality and
linearizability are correctness conditions that determine in which
order concurrent operations on a shared data structure may be per-
formed such that each operation appears to take effect instanta-
neously. We consider data structures such as stacks and queues
that provide an insert and a remove operation, and store elements
in a given order determined by an ordering condition such as last-
in first-out (LIFO), first-in first-out (FIFO), or highest priority first.
We focus on stacks and queues here since k-linearizability has an
effect on the order in which elements are stored that is monotone in
k, i.e., the larger the k the more the elements may be out-of-order,
cf. Proposition 1. Monotonicity establishes a bounded relationship
between adherence to data structure semantics and k-linearizability
and thus scalability. However, note that, similar to the definition of
linearizability, our definition of k-linearizability works for any con-
current data structure. In the following we discuss correctness and
ordering conditions in more detail and then introduce the definition
of k-linearizability.

We use the concept of a history H to model the execution of a con-
current system. A history H is a finite sequence of invocation and
response events of operations performed by concurrent threads on
a shared data structure. An operation op0 precedes operation op1,
if the response event of op0 happens before the invocation of op1.
The sequential order in which a single thread performs operations
is called program order. We omit further details and refer the reader
for a formal definition of a history as well as for how histories are
verified to be sequential or linearizable to [11, 10].

Figure 1: History H1

Let Σ be the set of possible states of a shared data structure after
applying a history H to an empty instance of the shared data struc-
ture using a correctness condition ξ and an ordering condition o.
The states in Σ are sequences of elements which may be stored
in the data structure instance after performing a series of concur-
rent operations. Elements in the sequences are ordered from left to
right. For example, using ordering condition FIFO an insert opera-
tion adds an element to the right end of the sequence and a remove
operation removes the left-most element of the sequence. Let func-
tion Φ : H ×Ξ×Ω → Π return a set Σ ∈ Π of possible states for a
history H ∈H , a correctness condition ξ∈Ξ, an ordering condition
o ∈ Ω, where H , Ξ, Ω, and Π are the sets of histories, correctness
conditions, ordering conditions, and possible states of a shared data
structure, respectively.

Sequentiality requires operations performed by a single thread on
a shared data structure to take effect in program order. The relative
order of operations performed by different threads does not need to
be kept. A history H is sequential if the first event of H is an invoca-
tion that is immediately followed by a matching response, and each
response is immediately followed by an invocation (except possibly
the last one). Figure 1 shows a history H1 of two threads perform-
ing insert and remove operations on a shared data structure. The
possible states of a shared data structure after applying history H1,
correctness condition sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are

Φ(H1,sequentiality,FIFO) = {< A2,B1 >,< B1,A2 >}.

The remove operation of history H1 returns element A1 which must
therefore be the first element stored in the data structure instance.
Elements A2 and B1 may be stored in arbitrary order since the order
of operations performed by different threads does not need to be
kept.

Linearizability requires that each data structure operation takes ef-
fect at some time instant between its invocation and response. A
history H is linearizable if there is a sequential history S which im-
plements H such that, if operation op0 precedes operation op1 in
H, then the same is true in S. Hence, operations in a linearizable
history which overlap in time may take effect in arbitrary order
whereas non-overlapping operations must take effect in sequential
order. Let us consider again history H1 of Figure 1. The insert
operations of elements B1 and the remove operation which returns
element A1 overlap in time and may therefore take effect in arbi-
trary order whereas the insert operations of elements A2 and B1
do not overlap in time and therefore must take effect in sequential
order. Thus there is one possible state of a shared data structure
after applying history H1, correctness condition linearizability, and
ordering condition FIFO to an empty instance of the shared data
structure:

Φ(H1, linearizability,FIFO) = {< A2,B1 >}.

2

©
 C

. K
ir

sc
h

20
10

Linearizability

•yet only ins(A1)-ins(A2)-ins(B1)-A1=rem()
with <A2,B1> is linearizable

• a history H is linearizable if H has a sequential
history that is serializable and preserves multi-
threaded precedence

• linearizability is compositional!

tentially be performed concurrently and in parallel without causing
contention. In Scal different types of linearizable data structures
can be implemented as k-linearizable data structures. In particu-
lar, the synchronization mechanism of the original data structure
is orthogonal to Scal. Note that k and the select function can be
configured by the programmer at compile time or online with the
help of performance counters. For example, a select function may
be chosen with k = 1 under low contention and with increasing k
as contention increases. Scal provides the same interface as the
original data structures and allows to express concurrency just in
the variable k, which may result in a software engineering benefit.
Programmers do not need to worry about complex implementation
techniques to improve the scalability of data structures [15].

We claim the following contributions: 1. The notion of k-linear-
izability and a set of load balancing algorithms for trading off ad-
herence to data structure semantics and scalability. 2. The design
of Scal that provides k-linearizability for concurrent data structures
using load balancing select functions and partial data structures. 3.
The implementation of Scal that consists of various load balancing
select functions and data structures which can be arbitrarily com-
bined. 4. An evaluation of Scal and a detailed analysis of its com-
ponents. The results of the experiments confirm that Scal shows in
the presented benchmarks positive scalability for concurrent data
structures that typically do not scale under high contention.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the notion of k-linearizability and its properties. In Section 3
we present the generic structure of Scal as well as different select
functions and data structures. In Section 4 we discuss related work.
Experimental results are presented and discussed in Section 5. The
conclusion is in Section 6.

2. K-LINEARIZABILITY

The definition of k-linearizability is based on the original defini-
tions of sequentiality and linearizability [11]. Sequentiality and
linearizability are correctness conditions that determine in which
order concurrent operations on a shared data structure may be per-
formed such that each operation appears to take effect instanta-
neously. We consider data structures such as stacks and queues
that provide an insert and a remove operation, and store elements
in a given order determined by an ordering condition such as last-
in first-out (LIFO), first-in first-out (FIFO), or highest priority first.
We focus on stacks and queues here since k-linearizability has an
effect on the order in which elements are stored that is monotone in
k, i.e., the larger the k the more the elements may be out-of-order,
cf. Proposition 1. Monotonicity establishes a bounded relationship
between adherence to data structure semantics and k-linearizability
and thus scalability. However, note that, similar to the definition of
linearizability, our definition of k-linearizability works for any con-
current data structure. In the following we discuss correctness and
ordering conditions in more detail and then introduce the definition
of k-linearizability.

We use the concept of a history H to model the execution of a con-
current system. A history H is a finite sequence of invocation and
response events of operations performed by concurrent threads on
a shared data structure. An operation op0 precedes operation op1,
if the response event of op0 happens before the invocation of op1.
The sequential order in which a single thread performs operations
is called program order. We omit further details and refer the reader
for a formal definition of a history as well as for how histories are
verified to be sequential or linearizable to [11, 10].

Figure 1: History H1

Let Σ be the set of possible states of a shared data structure after
applying a history H to an empty instance of the shared data struc-
ture using a correctness condition ξ and an ordering condition o.
The states in Σ are sequences of elements which may be stored
in the data structure instance after performing a series of concur-
rent operations. Elements in the sequences are ordered from left to
right. For example, using ordering condition FIFO an insert opera-
tion adds an element to the right end of the sequence and a remove
operation removes the left-most element of the sequence. Let func-
tion Φ : H ×Ξ×Ω → Π return a set Σ ∈ Π of possible states for a
history H ∈H , a correctness condition ξ∈Ξ, an ordering condition
o ∈ Ω, where H , Ξ, Ω, and Π are the sets of histories, correctness
conditions, ordering conditions, and possible states of a shared data
structure, respectively.

Sequentiality requires operations performed by a single thread on
a shared data structure to take effect in program order. The relative
order of operations performed by different threads does not need to
be kept. A history H is sequential if the first event of H is an invoca-
tion that is immediately followed by a matching response, and each
response is immediately followed by an invocation (except possibly
the last one). Figure 1 shows a history H1 of two threads perform-
ing insert and remove operations on a shared data structure. The
possible states of a shared data structure after applying history H1,
correctness condition sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are

Φ(H1,sequentiality,FIFO) = {< A2,B1 >,< B1,A2 >}.

The remove operation of history H1 returns element A1 which must
therefore be the first element stored in the data structure instance.
Elements A2 and B1 may be stored in arbitrary order since the order
of operations performed by different threads does not need to be
kept.

Linearizability requires that each data structure operation takes ef-
fect at some time instant between its invocation and response. A
history H is linearizable if there is a sequential history S which im-
plements H such that, if operation op0 precedes operation op1 in
H, then the same is true in S. Hence, operations in a linearizable
history which overlap in time may take effect in arbitrary order
whereas non-overlapping operations must take effect in sequential
order. Let us consider again history H1 of Figure 1. The insert
operations of elements B1 and the remove operation which returns
element A1 overlap in time and may therefore take effect in arbi-
trary order whereas the insert operations of elements A2 and B1
do not overlap in time and therefore must take effect in sequential
order. Thus there is one possible state of a shared data structure
after applying history H1, correctness condition linearizability, and
ordering condition FIFO to an empty instance of the shared data
structure:

Φ(H1, linearizability,FIFO) = {< A2,B1 >}.

2

©
 C

. K
ir

sc
h

20
10

k-Sequentiality

• a k-sequential history is a sequential history
where each response is virtually delayed until
the (k-1)th response

• 1-sequentiality is equivalent to sequentiality
• here: any sequential history is not serializable,

if A2=rem(), and thus not linearizable

Figure 2: History H2 with virtual delay 1

Next we introduce the notion of virtual delay, which allows us to
weaken the original correctness conditions by increasing the num-
ber of possibilities to reorder operations. We assume that each op-
eration returns at its response event but may then still be virtually
delayed until its so-called virtual response event. The time span
between the response event and the virtual response event of an
operation is called virtual delay.

Non-overlapping operations can be extended with virtual delays to
become operations that overlap. As a result, the order in which
these operations take effect can be changed since they happen vir-
tually in parallel. Note that even operations of a single thread can be
extended with virtual delays to overlap, which allows us to change
the program order of these operations, as depicted in Figure 2. Us-
ing the notion of virtual delay we define k-sequentiality as follows.

DEFINITION 1 (k-SEQUENTIALITY). A history Hk is k-sequen-
tial with k > 0 if it is obtained from a sequential history H by vir-
tually delaying each response event in H until the (k−1)th subse-
quent response event.

We also say that a k-sequential history is a history with virtual de-
lay k− 1. Note that 1-sequentiality is equivalent to sequentiality,
i.e., a sequential history is a history with virtual delay 0. The possi-
ble states of a shared data structure after applying history H2, cor-
rectness condition 2-sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are:

Φ(H2,2−sequentiality,FIFO) = {< A1,B1 >,< B1,A1 >}.

The insert operations of elements A1 and A2 virtually overlap in
time and may therefore take effect in arbitrary order. Element A2
happens to be the first element returned by the remove operation,
so it must be the first element in the data structure. Elements A1
and B1 may be stored in arbitrary order in the data structure.

The program order of the operations performed by thread T1 in H2
without virtual delay determines that element A1 must be located in
the shared FIFO queue before element A2, but A2 is returned by the
remove operation before A1. This implies that the program order
is not kept. Hence, history H2 is not sequential and therefore not
linearizable, but it is 2-sequential.

Next k-linearizability is defined according to the original definition
of linearizability [11].

DEFINITION 2 (k-LINEARIZABILITY). A history H is k-line-
arizable if there is a k-sequential history S which implements H
such that, if operation op0 precedes operation op1 in H, then the
same is true in S.

We say that a data structure is k-linearizable if all valid histories of

its use are k-linearizable. Note that 1-linearizability is equivalent
to linearizability. Let us consider again history H2 of Figure 2.
The possible states of a shared data structure after applying history
H2, correctness condition 2-linearizability, and ordering condition
FIFO to an empty instance of the shared data structure are:

Φ(H2,2−linearizability,FIFO) = {< A1,B1 >}.

The insert operations of elements A1 and A2 virtually overlap in
time. The insert operations of elements A1 and B1 do not overlap
in time. Element A2 is the first element returned by the remove
operation. Therefore, element A1 must be the second element in
the data structure followed by element B1 which results in the data
structure state mentioned above.

The following proposition states how different virtual delays affect
the number of possible data structure states after applying a given
k-linearizable history to a shared data structure.

PROPOSITION 1. For a given history H, correctness condition
k-linearizability, and an ordering condition o, it holds that, for any
virtual delays k1 −1 and k2 −1 with k1 > 0 and k2 > 0, if k1 ≤ k2
then Φ(H,k1−linearizability,o)⊆ Φ(H,k2−linearizability,o).

A larger virtual delay increases the number of possibilities
to reorder data structure operations of a given history, which
results in a larger number of possible shared data structure
states and therefore increasingly weakens shared data struc-
ture semantics. For k1 = k2 Proposition 1 holds trivially
since Φ(H,k1−linearizability,o) = Φ(H,k1−linearizability,o).
If k1 < k2 and if all operations in history H are overlap-
ping with each other then again Φ(H,k1−linearizability,o) =
Φ(H,k2−linearizability,o). Otherwise the larger virtual de-
lay of k2 allows more reordering combinations of opera-
tions then k1 which results in Φ(H,k1−linearizability,o) ⊂
Φ(H,k2−linearizability,o).

Linearizability is compositional, i.e., if the histories of all data
structures used in a system are linearizable then the entire system
is linearizable. A k-linearizable history can be considered as a lin-
earizable history where the virtual response events represent the
reponse events of the operations. As a consequence, a system con-
sisting of linearizable and k-linearizable data structures is compo-
sitional which can be shown by the proof presented in [10].

3. SCAL: K-LINEARIZABLE DATA

STRUCTURES

Scal implements k-linearizable data structures using a select func-
tion and k partial data structures, which are identical instances of
a given data structure. The select function determines on which
partial data structure an operation is performed. Scal introduces a
wrapper that distributes operations on the partial data structures as
depicted in the pseudo code in Listing 1. The actual data structure
operation is given in the parameters of the generic Scal op func-
tion, e.g. as a function pointer. In case of an insert operation the
parameters contain the given element and the return statement re-
turns a boolean value indicating whether the insert operation was
successful. In case of a remove operation an element is returned if
the data structure is not empty, otherwise NULL is returned.

In the following we discuss different types of select functions, par-

3

©
 C

. K
ir

sc
h

20
10

k-Linearizability

•but 2-sequential histories are serializable here:
ins(A2)-ins(A1)-ins(B1)-A2=rem() and
ins(A2)-ins(A1)-A2=rem()-ins(B1) with
<A1,B1>, and thus even 2-linearizable!

• a history H is k-linearizable if H has a k-
sequential history that is serializable and
preserves multi-threaded precedence

Figure 2: History H2 with virtual delay 1

Next we introduce the notion of virtual delay, which allows us to
weaken the original correctness conditions by increasing the num-
ber of possibilities to reorder operations. We assume that each op-
eration returns at its response event but may then still be virtually
delayed until its so-called virtual response event. The time span
between the response event and the virtual response event of an
operation is called virtual delay.

Non-overlapping operations can be extended with virtual delays to
become operations that overlap. As a result, the order in which
these operations take effect can be changed since they happen vir-
tually in parallel. Note that even operations of a single thread can be
extended with virtual delays to overlap, which allows us to change
the program order of these operations, as depicted in Figure 2. Us-
ing the notion of virtual delay we define k-sequentiality as follows.

DEFINITION 1 (k-SEQUENTIALITY). A history Hk is k-sequen-
tial with k > 0 if it is obtained from a sequential history H by vir-
tually delaying each response event in H until the (k−1)th subse-
quent response event.

We also say that a k-sequential history is a history with virtual de-
lay k− 1. Note that 1-sequentiality is equivalent to sequentiality,
i.e., a sequential history is a history with virtual delay 0. The possi-
ble states of a shared data structure after applying history H2, cor-
rectness condition 2-sequentiality, and ordering condition FIFO to
an empty instance of the shared data structure are:

Φ(H2,2−sequentiality,FIFO) = {< A1,B1 >,< B1,A1 >}.

The insert operations of elements A1 and A2 virtually overlap in
time and may therefore take effect in arbitrary order. Element A2
happens to be the first element returned by the remove operation,
so it must be the first element in the data structure. Elements A1
and B1 may be stored in arbitrary order in the data structure.

The program order of the operations performed by thread T1 in H2
without virtual delay determines that element A1 must be located in
the shared FIFO queue before element A2, but A2 is returned by the
remove operation before A1. This implies that the program order
is not kept. Hence, history H2 is not sequential and therefore not
linearizable, but it is 2-sequential.

Next k-linearizability is defined according to the original definition
of linearizability [11].

DEFINITION 2 (k-LINEARIZABILITY). A history H is k-line-
arizable if there is a k-sequential history S which implements H
such that, if operation op0 precedes operation op1 in H, then the
same is true in S.

We say that a data structure is k-linearizable if all valid histories of

its use are k-linearizable. Note that 1-linearizability is equivalent
to linearizability. Let us consider again history H2 of Figure 2.
The possible states of a shared data structure after applying history
H2, correctness condition 2-linearizability, and ordering condition
FIFO to an empty instance of the shared data structure are:

Φ(H2,2−linearizability,FIFO) = {< A1,B1 >}.

The insert operations of elements A1 and A2 virtually overlap in
time. The insert operations of elements A1 and B1 do not overlap
in time. Element A2 is the first element returned by the remove
operation. Therefore, element A1 must be the second element in
the data structure followed by element B1 which results in the data
structure state mentioned above.

The following proposition states how different virtual delays affect
the number of possible data structure states after applying a given
k-linearizable history to a shared data structure.

PROPOSITION 1. For a given history H, correctness condition
k-linearizability, and an ordering condition o, it holds that, for any
virtual delays k1 −1 and k2 −1 with k1 > 0 and k2 > 0, if k1 ≤ k2
then Φ(H,k1−linearizability,o)⊆ Φ(H,k2−linearizability,o).

A larger virtual delay increases the number of possibilities
to reorder data structure operations of a given history, which
results in a larger number of possible shared data structure
states and therefore increasingly weakens shared data struc-
ture semantics. For k1 = k2 Proposition 1 holds trivially
since Φ(H,k1−linearizability,o) = Φ(H,k1−linearizability,o).
If k1 < k2 and if all operations in history H are overlap-
ping with each other then again Φ(H,k1−linearizability,o) =
Φ(H,k2−linearizability,o). Otherwise the larger virtual de-
lay of k2 allows more reordering combinations of opera-
tions then k1 which results in Φ(H,k1−linearizability,o) ⊂
Φ(H,k2−linearizability,o).

Linearizability is compositional, i.e., if the histories of all data
structures used in a system are linearizable then the entire system
is linearizable. A k-linearizable history can be considered as a lin-
earizable history where the virtual response events represent the
reponse events of the operations. As a consequence, a system con-
sisting of linearizable and k-linearizable data structures is compo-
sitional which can be shown by the proof presented in [10].

3. SCAL: K-LINEARIZABLE DATA

STRUCTURES

Scal implements k-linearizable data structures using a select func-
tion and k partial data structures, which are identical instances of
a given data structure. The select function determines on which
partial data structure an operation is performed. Scal introduces a
wrapper that distributes operations on the partial data structures as
depicted in the pseudo code in Listing 1. The actual data structure
operation is given in the parameters of the generic Scal op func-
tion, e.g. as a function pointer. In case of an insert operation the
parameters contain the given element and the return statement re-
turns a boolean value indicating whether the insert operation was
successful. In case of a remove operation an element is returned if
the data structure is not empty, otherwise NULL is returned.

In the following we discuss different types of select functions, par-

3

© C. Kirsch 2010

• 1-linearizability is equivalent to linearizability

• k-linearizability remains compositional!

Compositionality

© C. Kirsch 2010

Monotonicity

• semantics (and scalability) of k-linearizability
is monotone in k, for example:

• a k-linearizable stack may not return the
youngest but up to the k-youngest element

• a k-linearizable FIFO queue may not return
the oldest but up to the k-oldest element

©
 C

. K
ir

sc
h

20
10

Select Function

Listing 1: Scal generic structure
1 op(data_structure , parameters) {
2 partial_ds = select (data_structure);
3 return partial_op (partial_ds , parameters);
4 }

3.1 Select Function
A select function that provides k-linearizability must distribute op-
erations over the k partial data structures evenly. Achieving an
even distribution of operations requires expensive global coordina-
tion mechanisms, which may anyway provide positive scalability
in some cases because more operations may be executed concur-
rently but may still be too restrictive under high contention. Select
functions that approximate k-linearizability probabilistically with-
out global coordination may scale to a larger amount of concur-
rent load. In this case, the adherence to the given data structure
semantics may not be weakened much further as long as the k is
sufficiently large and the data structure is sufficiently utilized. In
general, the better a select function distributes operations over the
partial data structures, the more operations can run concurrently
and in parallel, and the better the semantics of the original data
structure are approximated. In addition, a select function should be
computationally efficient to minimize its overhead.

3.1.1 Perfect Load Balancing

A select function that provides a perfect balance of operations and
thus k-linearizability can be implemented with global counters that
indicate which partial data structure is to be used next. For ex-
ample, in a FIFO queue two global counters are sufficient. One
counter indicates on which partial data structure the last enqueue
operation was performed and the other counter indicates on which
partial data structure the last dequeue operation was performed.
The global counters are accessed and modified using atomic op-
erations, which can cause cache conflicts on high contention when
multiple threads modify the same memory locations. Positive scal-
ability can be achieved under low concurrent load since the select
function itself is simple and contention on the shared memory loca-
tions rarely happens. A perfectly balancing select function provides
k-linearizability. We refer to it as perfect select function. Note that
it does not provide linearizability for k = 1 in Scal since it is not
executed atomically with the partial data structure operations.

3.1.2 Randomized Load Balancing

Another approach is to use a select function that randomly dis-
tributes operations over partial data structures. This approach, also
known as randomized load balancing, has been proven to provide
good distribution quality if the random numbers are distributed in-
dependently and uniformly [2, 3]. However, generating such ran-
dom numbers may be computationally expensive. Therefore, it is
essential to find the right trade-off between quality and overhead of
random number generation. An efficient random number generator
that produces evenly distributed random numbers was discussed
in [17]. The distribution quality of a select function based on a ran-
dom number generator determines the probability of approximating
k-linearizability. We refer to a select function based on a random
number generator as random select function.

Suppose that n operations are performed on k partial data structures
using a random select function. With a probability of at least 1−
O(1

k
), the maximum number of operations performed on just one

partial data structure is n

k
+Θ(

�
n logk

k
) [3]. Thus a larger k leads

 0.1

 1

 10

 100

 1000

 10000

 100000

2 4 8 16 32 64 128 256 512 1024 2048 4096

st
a

n
d

a
rd

 d
e

vi
a

tio
n

 o
f

th
e

 a
m

o
u

n
t

o
f

p
a

rt
ia

l d
a

ta
 s

tr
u

ct
u

re
 s

e
le

ct
io

n
s

(l
o

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

k (log scale)

random 2-random 3-random hw-random

Figure 3: Balancing quality of different random select func-
tions with increasing number of partial data structures (k)

to a better balance of operations and thus to a higher probability of
approximating k-linearizability.

In order to improve the balancing quality of the random select func-
tion d partial data structures with 1 < d ≤ k may be chosen ran-
domly. Out of the d partial data structures the instance that con-
tributes most to a better balance is selected. For example, an en-
queue operation on a FIFO queue may be performed on the partial
data structure that contains the fewest elements. We refer to such
a select function as d-random select function. The overhead of the
d-random select function increases linearly in d since the random
number generator is called d times. Suppose again that n operations
are performed on k partial data structures. With a probability of at
least 1−O(1

k
), the maximum number of operations performed on

one partial data structure is then n

k
+Θ(log logk

d
) [3]. The parameter

d allows us to trade off balancing quality and global coordination
overhead. Moreover, d = 2 leads to an exponential improvement in
the balancing quality in comparison to the random select function.
Note that d > 2 further improves the balancing quality but only by
a constant factor [3]. Again, a larger k leads to a better balance
of operations and thus to a higher probability of approximating k-
linearizability.

We conducted several experiments to evaluate the balancing quality
of four different random select functions: random, 2-random, and
3-random use a simple but efficient random number generator as
discussed in [17]; and hw-random is a random select function that
takes the time stamp counter register of the CPU (RDTSC) mod-
ulo k. During each experiment the select function is executed a mil-
lion times and we keep track how often each partial data structure
is selected. Figure 3 shows the standard deviation of the amount
of partial data structure selections. For each random select func-
tion the experiment is repeated using values between 2 and 4096
for k. For example, the standard deviation of how often a partial
data structure among 16 partial data structures (k = 16) is selected
by the 2-random select function is 1 and 10000 by the hw-random
select function. hw-random produces the worst distribution among
the four evaluated select functions. The experiments also confirm
that the d-random select functions provide a significant improve-
ment in balancing quality in comparison to the random select func-
tion. The standard deviation of the amount of performed operations
on the k partial data structures using the d-random select functions

4

• Scal implements a k-linearizable version of a
given data structure using a select function
and k identical instances of the given structure

• perfect select: 100% k-linearizable
• random select: k-linearizable with high prob.
• d-random select: k-linearizable with high prob.

©
 C

. K
ir

sc
h

20
10

Quality of Random

 0.1

 1

 10

 100

 1000

 10000

 100000

2 4 8 16 32 64 128 256 512 1024 2048 4096

st
a

n
d

a
rd

 d
e

vi
a

tio
n

 o
f

th
e

 a
m

o
u

n
t

o
f

p
a

rt
ia

l d
a

ta
 s

tr
u

ct
u

re
 s

e
le

ct
io

n
s

(l
o

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

k (log scale)

random 2-random 3-random hw-random

© C. Kirsch 2010

No vs. High Contention

Scal is also related to distributed data structures that spread their
data over multiple computers. For instance, the distributed hash
table presented in [8] uses a special management unit that han-
dles load distribution, ensures data consistency, and provides lin-
earizability. The authors showed that such a design provides high
throughput and allows to handle a high degree of concurrency. In
Scal data is distributed over multiple instances of the same data
structure to control the trade-off between adherence to data struc-
ture semantics and scalability. Note that Scal could in principle
distribute partial data structures over different computers. This is
left for future work.

Similar to distributed data structures, distributed databases [22]
also spread data over multiple computers. Google’s BigTable [6]
is a special form of a distributed database designed for large-scale
distributed systems. BigTable can be used in different kinds of ap-
plications while providing scalability. In distributed databases such
as BigTable a database management system (DBMS) is in charge
of providing data consistency while balancing the load on the dis-
tributed database. The select function of Scal can be seen as a sim-
ple DBMS, which distributes load over partial data structures.

A compiler that generates a parallel program and gives only a sta-
tistical accuracy guarantee on the output is presented in [13]. The
generated program does not produce the same output as its sequen-
tial version. This approach simplifies the implementation of the
compiler and provides more possibilities for parallelization. Sim-
ilar to Scal, but on a different level, accuracy is traded for perfor-
mance.

Software transactional memory [20] gained a lot of interest in re-
cent years since it simplifies programming in a parallel environ-
ment and promises better scalability than traditional lock-based
synchronization. k-linearizable data structures are orthogonal to
software transactional memory. They may allow to speed up sys-
tems in which software transactional memory is used when data
structure operations are distributed over k partial data structures po-
tentially reducing the number of transaction retries.

4.2 Concurrent Data Structures

Concurrent data structures are key components to provide scala-
bility of applications. Traditionally, scalability of concurrent data
structures may be increased by using fine-grained synchronization
mechanisms which may allow a higher degree of concurrency in
comparison to a single global lock.

In [16] the authors proposed a two-lock queue where one lock pro-
tects the head and the other lock protects the tail of the queue.
The two locks allow one enqueue and one dequeue operation to be
performed concurrently. The approach does not scale well when
several threads perform enqueue or dequeue operations concur-
rently. The same paper introduces a lock-free queue, which is im-
plemented as part of the Java concurrency package. Under high
concurrent load this algorithm does not scale since all threads apply
at least two compare-and-swap operations in the enqueue operation
and one compare-and-swap operation in the dequeue operation. For
our experiments we implemented the lock-free queue and showed
that its Scal implementation scales. Another lock-free queue is the
basket queue of Hoffman et al. [12].

Treiber presented a lock-free stack algorithm, which uses a
compare-and-swap operation to manipulate the top pointer of a
stack [23]. We evaluate this algorithm with different Scal config-

select function no contention high contention
perfect 51 ns 3113 ns
random 59 ns 64 ns
2-random 108 ns 259 ns

Table 1: Select function overhead

urations in our experiments and show that it scales with Scal. The
performance of the lock-free stack algorithm can be improved by
using a so-called elimination backoff stack [9]. It combines com-
plementary data structure operations of threads to minimize global
data structure access. A non-linearizable stack algorithm based on
the elimination tree technique was proposed in [19]. It is a lock-free
algorithm which introduces a high constant overhead. This signif-
icantly degrades performance under low concurrent loads. Addi-
tionally, it is not linearizable and the authors do not discuss the
trade-off between data structure semantics and scalability.

Priority queues based on skip-lists allow fine-grained synchroniza-
tion but also suffer from synchronization overhead. In our ex-
periments we evaluate the lock-based skip-list algorithm presented
in [14] and show that it scales in Scal. A skip-list is composed of a
set of sorted linked lists. Each list has a level, ranging from the low-
est level 0 to a given maximum level. List level 0 contains all the
list elements and each higher-level list is a sublist of the lower-level
lists containing links to the lower level. The higher-level lists can
be viewed as shortcuts into the lower-level lists. An element in the
skip-list is found by starting at the highest-level list. Each level is
traversed until the right shortcut to the lower level is found which is
used to descend in the level hierarchy. This procedure is performed
until list level 0 is reached where the elements are located.

5. EXPERIMENTS

In this section we discuss the results of our experiments. We eval-
uate the overhead of Scal and compare different lock-based and
lock-free data structures with their k-linearizable counterparts.

All experiments ran on a server machine with four 6-core 2.1GHz
AMD Opteron processors (24 cores) and 48GB of memory on
Linux 2.6.32. In all experiments the benchmark threads were ex-
ecuted with real-time priorities to minimize system jitter. All al-
gorithms are implemented in C and compiled using gcc 4.3.3 with
-O3 optimizations. Allocation and deallocation of elements used
in the data structures was done on a thread-local basis to minimize
cache problems and to avoid scalability issues introduced by the
allocator.

5.1 Overhead

We examine the perfect, random, and 2-random select functions in
a no-contention scenario where one thread operates on a given data
structure and in a high-contention scenario where 24 threads oper-
ate on a given data structure. The average overhead in nanoseconds
of the select functions is depicted in Table 1. In the no-contention
scenario the perfect select function introduces the lowest overhead
with just 51 nanoseconds whereas under high contention it takes
an average of 3113 nanoseconds to complete a request. Contention
occurs on the global round-robin counters, which are a scalabil-
ity bottleneck as discussed in Section 3.1.1. The random select
function shows similar performance in the no-contention and in the
high-contention scenario. It operates on thread-local data only. The
performance of the 2-random select function slightly decreases un-

7

© C. Kirsch 2010

Medium Computational Load

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

lock-free baseline
lock-based baseline

lock-free perfect k=32

lock-free 2-random k=32
lock-based perfect k=32

lock-based 2-random k=32

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g

e
 n

u
ll

re
tu

rn
s/

th
re

a
d

 (
lo

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

lock-free baseline
lock-based baseline

lock-free perfect k=32

lock-free 2-random k=32
lock-based perfect k=32

lock-based 2-random k=32

Performance Semantics

© C. Kirsch 2010

High Computational Load

Performance Semantics

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

lock-free baseline
lock-based baseline
lock-free perfect k=8

lock-free 2-random k=8
lock-based perfect k=8

lock-based 2-random k=8

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g

e
 n

u
ll

re
tu

rn
s/

th
re

a
d

 (
lo

g
 s

ca
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

lock-free baseline
lock-based baseline
lock-free perfect k=8

lock-free 2-random k=8
lock-based perfect k=8

lock-based 2-random k=8

©
 C

. K
ir

sc
h

20
10

Semantics for k=10

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

n
u

m
b

e
r

o
f

o
p

e
ra

tio
n

s

error distance

perfect k=10 random k=10 2-random k=10 3-random k=10

© C. Kirsch 2010

Precise Backoff

that the d-random select functions provide a significant improve-
ment in balancing quality in comparison to the random select func-
tion. The standard deviation of the amount of performed operations
on the k partial data structures using the d-random select functions
is approximately 1. However, in terms of execution time the d-
random select functions are d times slower than the random select
function since their random number generator is invoked d times
more often.

3.1.3 Thread-based Load Balancing

Thread-local data can be used as selection criteria for a select func-
tion. For example, a select function can be implemented as a static
mapping between thread IDs and partial data structures. All opera-
tions of a given thread are forwarded to a unique partial data struc-
ture. Another example are thread-local round-robin counters which
distribute data structure operations of a single thread in round-robin
manner over the partial data structures. Both strategies are efficient
since the select function is simple and just operates on thread-local
data. However, arguing about distribution quality and probability
of reaching a given balance is difficult, since the behavior of all
threads operating on the data structure determine the balance and
not a global random number generator.

3.1.4 Hardware-based Load Balancing

A hardware-based select function can take advantage of CPU-local
data structures. For example, if a select function is executed by a
given thread on CPU core i it may choose partial data structure i.
Similar approaches are already widely used in various operating
systems such as in the Linux scheduler and in userland programs
such as the mostly lock-free memory allocator [7]. CPU-local data
structures increase locality and reduce interconnect traffic. Re-
alizing this in userland requires mechanisms like multi-processor
restartable critical sections [7] or scheduler activations [1], which
give userland programs information about scheduling decisions. In
the future we plan to evaluate hardware-based select functions for
userland applications.

3.2 Partial Data Structures
In Scal a data structure is composed of k partial data structures.
Each partial data structure is an instance of the same unmodified
linearizable data structure and treated as a black box. In particular,
a partial data structure uses the same synchronization mechanisms
as the original linearizable data structure.

The remove operation of a k-linearizable data structure returns with
a probability of 1/k the same element as the original linearizable
data structure. A larger k increases the probability that more oper-
ations are performed concurrently and in parallel. However, it de-
creases the probability of choosing the partial data structure that ap-
proximates the original data structure semantics best, which weak-
ens the Scal approximation of the given data structure semantics.

In the following we discuss how different types of data structures
that maintain an order of the stored elements are handled in Scal.

3.2.1 Time-Dependent Data Structures

For time-dependent data structures the time instant of the data
structure operation determines the order of the elements in the data
structure.

Listing 2: Precise backoff algorithm
1 op(data_structure , parameters) {

2 do {

3 partial_ds = select(data_structure);

4 elem = partial_op(partial_ds , parameters);

5 if (test(elem)) {

6 update(counter , parameters);

7 return elem;

8 }

9 } while (!complete(counter , parameters));

10

11 return null;

12 }

Listing 3: Heuristic backoff algorithm
1 op(data_structure , parameters) {

2 checks = MAX_CHECKS;

3 while (checks != 0) {

4 partial_ds = select(data_structure);

5 elem = partial_op(partial_ds , parameters);

6 if (test(elem))

7 return elem;

8 else if (checks == 0)

9 return null;

10 checks --;

11 }

12 }

The most prominent representatives of this type of data structure
are stacks and FIFO queues. They typically provide an insert and
a remove operation. The semantical weakening introduced by k-
linearizability becomes apparent when performing a remove opera-
tion. The remove operation may return an element that is in timely
order at most k elements away from the element that would have
been returned by the linearizable data structure.

3.2.2 Value-Dependent Data Structures

In value-dependent data structures the values of the elements de-
termine the order of the elements in the data structure. Such data
structures typically provide an insert and a remove operation with a
given ordering condition, e.g., remove the element with the largest
value. Prominent representatives of such data structures are prior-
ity queues. Note that in order to balance the elements of a priority
queue, the d-random select function has to take the values of the
elements into account and not just the number of elements in the
partial data structures [21, 4].

3.3 Optimizations
Different optimizations can be applied to the generic structure of
Scal to improve its applicability and performance. In the following
we discuss a backoff algorithm that improves the applicability of
Scal and a mechanism to tune Scal online to achieve better scala-
bility.

3.3.1 Backoff Algorithm

Some applications are based on the assumption that a remove op-
eration returns an element if there exists at least one element in the
data structure, or that an insert operation fails only if the data struc-
ture is full. A k-linearizable data structure that does not meet these
requirements can lead to deadlocks, crashes, or abnormal behavior
of the application. Scal as introduced above does not meet these
requirements. For example, the select function of a remove op-

5

© C. Kirsch 2010

Heuristic Backoff

that the d-random select functions provide a significant improve-
ment in balancing quality in comparison to the random select func-
tion. The standard deviation of the amount of performed operations
on the k partial data structures using the d-random select functions
is approximately 1. However, in terms of execution time the d-
random select functions are d times slower than the random select
function since their random number generator is invoked d times
more often.

3.1.3 Thread-based Load Balancing

Thread-local data can be used as selection criteria for a select func-
tion. For example, a select function can be implemented as a static
mapping between thread IDs and partial data structures. All opera-
tions of a given thread are forwarded to a unique partial data struc-
ture. Another example are thread-local round-robin counters which
distribute data structure operations of a single thread in round-robin
manner over the partial data structures. Both strategies are efficient
since the select function is simple and just operates on thread-local
data. However, arguing about distribution quality and probability
of reaching a given balance is difficult, since the behavior of all
threads operating on the data structure determine the balance and
not a global random number generator.

3.1.4 Hardware-based Load Balancing

A hardware-based select function can take advantage of CPU-local
data structures. For example, if a select function is executed by a
given thread on CPU core i it may choose partial data structure i.
Similar approaches are already widely used in various operating
systems such as in the Linux scheduler and in userland programs
such as the mostly lock-free memory allocator [7]. CPU-local data
structures increase locality and reduce interconnect traffic. Re-
alizing this in userland requires mechanisms like multi-processor
restartable critical sections [7] or scheduler activations [1], which
give userland programs information about scheduling decisions. In
the future we plan to evaluate hardware-based select functions for
userland applications.

3.2 Partial Data Structures
In Scal a data structure is composed of k partial data structures.
Each partial data structure is an instance of the same unmodified
linearizable data structure and treated as a black box. In particular,
a partial data structure uses the same synchronization mechanisms
as the original linearizable data structure.

The remove operation of a k-linearizable data structure returns with
a probability of 1/k the same element as the original linearizable
data structure. A larger k increases the probability that more oper-
ations are performed concurrently and in parallel. However, it de-
creases the probability of choosing the partial data structure that ap-
proximates the original data structure semantics best, which weak-
ens the Scal approximation of the given data structure semantics.

In the following we discuss how different types of data structures
that maintain an order of the stored elements are handled in Scal.

3.2.1 Time-Dependent Data Structures

For time-dependent data structures the time instant of the data
structure operation determines the order of the elements in the data
structure.

Listing 2: Precise backoff algorithm
1 op(data_structure , parameters) {

2 do {

3 partial_ds = select(data_structure);

4 elem = partial_op(partial_ds , parameters);

5 if (test(elem)) {

6 update(counter , parameters);

7 return elem;

8 }

9 } while (!complete(counter , parameters));

10

11 return null;

12 }

Listing 3: Heuristic backoff algorithm
1 op(data_structure , parameters) {

2 checks = MAX_CHECKS;

3 while (checks != 0) {

4 partial_ds = select(data_structure);

5 elem = partial_op(partial_ds , parameters);

6 if (test(elem))

7 return elem;

8 else if (checks == 0)

9 return null;

10 checks --;

11 }

12 }

The most prominent representatives of this type of data structure
are stacks and FIFO queues. They typically provide an insert and
a remove operation. The semantical weakening introduced by k-
linearizability becomes apparent when performing a remove opera-
tion. The remove operation may return an element that is in timely
order at most k elements away from the element that would have
been returned by the linearizable data structure.

3.2.2 Value-Dependent Data Structures

In value-dependent data structures the values of the elements de-
termine the order of the elements in the data structure. Such data
structures typically provide an insert and a remove operation with a
given ordering condition, e.g., remove the element with the largest
value. Prominent representatives of such data structures are prior-
ity queues. Note that in order to balance the elements of a priority
queue, the d-random select function has to take the values of the
elements into account and not just the number of elements in the
partial data structures [21, 4].

3.3 Optimizations
Different optimizations can be applied to the generic structure of
Scal to improve its applicability and performance. In the following
we discuss a backoff algorithm that improves the applicability of
Scal and a mechanism to tune Scal online to achieve better scala-
bility.

3.3.1 Backoff Algorithm

Some applications are based on the assumption that a remove op-
eration returns an element if there exists at least one element in the
data structure, or that an insert operation fails only if the data struc-
ture is full. A k-linearizable data structure that does not meet these
requirements can lead to deadlocks, crashes, or abnormal behavior
of the application. Scal as introduced above does not meet these
requirements. For example, the select function of a remove op-

5

© C. Kirsch 2010

Medium Computational Load
(Backoff)

Precise Backoff Heuristic Backoff

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt
e

r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt
e

r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

Thank you

Check out:
eurosys2011.cs.uni-salzburg.at

http://eurosys2011.cs.uni-salzburg.at
http://eurosys2011.cs.uni-salzburg.at

