T -
N

Al s
. -

T A R i
e 5 R
Rk

..
N
-

e o

Selfie: Towards Minimal Symbolic Execution

Alireza S. Abyaneh, Simon Bauer, Christoph M. Kirsch, Philipp Mayer, Christian Mosl, Clément
Poncelet, Sara Seidl, Ana Sokolova, and Manuel Widmoser, University of Salzburg, Austria

ARC Group Meeting, UC Berkeley, July 2018

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

What is the meaning
of this sentence?

Selfie as in

self-referentiality

Interpretation

Compilation

Teaching the Construction of
Semantics of Formalisms

Virtualization

Verification

Joint Work

+ Alireza Abyaneh + Cornelia Mayer
+ Martin Aigner + Philipp Mayer

+ Sebastian Arming #+ Christian Moesl
+ Christian Barthel + Simone Oblasser
+ Simon Bauer + Clement Poncelet
+ Thomas Hiitter + Sara Seidl

+ Alexander Kollert + Ana Sokolova

+ Michael Lippautz + Manuel Widmoser

Insprration

+ Armin Biere: SAT /SMT Solvers
+ Donald Knuth: Art

+ Jochen Liedtke: Microkernels

+ Hennessy / Patterson: RISC

+ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. aself-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. atiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Code as Prose

wnllinn Makalile QuUina.C st o celar.c grammarmd wmmantics axd - X REATIME .l iniax . md introduct on semanbicemd —

uint64 t leftShift(uint64 t n, uint64 t b) { =
// assert: @ <= b < CPUBITWIDTH
return n * twoToThePowerOf(b); S

uint64_t rightShift(uint64_t n, uintéd_t b) { =
// assert: @ <= b < CPUBITWIDTH iiim
return n / twoToThePower0f(b); §§§

} il

uint64_t getBits(uint64_t n, uint64_t i, uinted_t b) { e

// assert: @ < b <= 1 + b < CPUBITWIDTH i

if (i == 0) ==

return n % twoToThePowerQf(b): =

else =
// shift to-be-loaded bits all the way to the left —
// to reset all bits to the left of them, then ii:-
// Shift to-be-loaded bits all the way to the right and return ,5;9*
return rightShift(leftShift(n, CPUBITWIDTH - (i + b)), CPUBITWIDTH - b); rr
} =
L T S LT e Uy Fy TR Wy B SO Lt

salflec W OAODC 1774 e LF UTF-8 C gite¢ ‘A" Fmaster + ¢ [D2fies

Also, there 1s a...

+ linker (in-memory only)

%+ disassembler (w/ source code line numbers)

+ debugger (tracks full machine state w/ rollback)

+ profiler (#proc-calls, #loop-iterations, #loads, #stores)

+ ELF boot loader (same code for mipster /hypster)

Discussion of Selfie reached
3rd place on Hacker News

http://news.ycombinator.com

Website

selfie.cs.uni-salzburg.at

Code

github.com / cksystemsteaching /selfie

Slides (incomplete)

selfie.cs.uni-salzburg.at/slides

Book (draft)

leanpub.com / selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie
http://selfie.cs.uni-salzburg.at/slides

nsf.gov/ csforall

code.org
computingatschool.org.uk

programbydesign.org

bootstrapworld.org

k12cs.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

= ctternents | [UANE64 t atoi (uint64 t *s)| 1o datatypes other
: RS AR s ithan uint64 t and
ass1gn.ment uint64_t n; B Qe (1AL e EaTe !
W}.ule AR dereferencing:
ret11f1rn Al . the ™ operator
7 ocedure() 2 F 8 & character literals

e literals

whi

return -1;

integer arithmetics jmwi |

’ — Al no bitwise operators
pointer arithmetics [

S LSRG no Boolean operators

J

S B UNE AT b K

library: exit, malloc, open, read, write

J

Minimally complex,
maximally self-
contaied system

Programming languages
VS systems engineering?

> make

cc -w -m64 -D'main(a,b)=main(a,charxxargv)"’

bootstrapping selfie.c into x86 selfie executable
using standard C compiler

> ./selfie

./selfie: usage: fle {|-c_{ source }|||-o0 binary |m
||1-1 binary|} [| —d ~min —mo Size|

selfie usage

- /settie [setrie]

./selfie:

./selfie:
./selfie:
./selfie:
./selfie:
/selfie:

b

ytes of

this is selfie's starc compiling selfie.c

176408 characters read in 7083 lines and 969 comments
with 97779(55.55%) characters in 28914 actual symbols

261 global variables, 289 procedures, 450 string literals
1958 calls, 723 assignments, 57 while, 572 if, 243 return
121660 bytes generated with 28779 instructions and 6544
data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie —c

./selfie: this is selfie's starc compiling selfie.c

compiling selfie.c with x86 selfie executable into a RISC-U executable
and

then running that RISC-U executable tg compile selfie.c again
(takes ~6 minutes)

> ./selfie —c selfie.c|-o0 selfiel.m|-m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c
oytes wit 3/79 1nstructions anc

ritten into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c

elfiel.m: 121660 bytes with 28779 1instructions and 6544 bytes of data
ritten into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c intoa RISC-U executable selfiel .m
and
then running selfiel.mto compile selfie.c
into another RISC-U executable selfie2 .m
(takes ~6 minutes)

Implementing an OS Kernel:

I-Week Homework Assignment

Pormalism

< Comvpiler

< Emulator

Machine

IIOSII

Pormalism

Compiler

|

Parm_alism

< Comvpiler

Emulator B

Emulator B

Emulator C

Emulator A

Machine

< Emulator A

Machine

./selfie —c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then running that executableta compile selfie.c again
(takes ~24 hours)

Emulation versus Virtuahization

Pormalism

< Comvpiler

Formalism

Compiler

|

Emulator B

Formalism

Compiler

|

Hypervisor

< Emulator

Machine

Emulator A

Machine

Emulator A

Machine

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then hosting that executable in g pirtualagchine to compile selfie.c again
(takes ~12 minutes)

Homework ldeas

+ Implement bitwise shifting (<<, >> as well as SLL, SRL)
+ Multi-dimensional arrays and recursive structs

+ Lazy evaluation of Boolean operators

+ Conservative garbage collection

+ Processes and threads, multicore support

+ Locking and scheduling

<+ Atomic instructions and lock-free data structures

Ongoing Work

+ SAT/SMT Solvers (microsat/boolector)
Verification |+ Symbolic Execution Engine (KLEE/SAGE)
% Inductive Theorem Prover (ACL2)

-> microsat in C” is as fast as in C (forget structs, arrays, &&, | |, goto)

1. Large memory and multicore support
ISAs 2. x86 support through binary translation
3. ARM support?

% .
LA B b AR

e o

& b
T Lt

) Ye
TR b
LT

_” s

555
IRy

7’ Vit iy o
SR T

5

Replay vs. Symbolic Execution

+ Selfie supports replay of RISC-U execution upon detecting
runtime errors such as division by zero

% Selfie first rolls back n instructions (undo (!) semantics,
system calls?) and then re-executes them but this time
printed on the console

* We use a cyclic buffer for replaying n instructions

+ That buffer is also used in symbolic execution but then for
recording symbolic execution of up to n instructions

5, y &m 111 ’..

w _ mﬁgﬁ &‘m? %&gk .m:b«'._,_w,.,..ﬁ i RN

mal
1C
D

1rirna

systems code like selfie’s symbolically?

What exactly is needed to execute

KExecution

M

Symbolic Execution: Status

+ We fuzz input read from files

+ Symbolic execution proceeds by computing integer
interval constraints, only recording memory stores

+ Sound but only complete for a subset of all programs

+ Selfie compiler falls into that subset, so far...

+ We detect division by zero, (some) unsafe memory access

Symbolic Execution: Future

+ Witness generation and on-the-fly validation
+ Loop termination through manually crafted invariants
+ Parallelization on our 64-core machine

+ And support for utilizing 0.5TB of physical memory

Got Research Ideas?

+ Selfie is a simple but still realistic sandbox

+ You control everything!

+ Want to play with an idea that requires compiler/
operating systems/architecture support?

+ We are glad to help you get started!

Thank youl

