Trafhic Shaping System Calls
Using Threading by Appointment

Christoph Kirsch
University of Salzburg

Joint work with Harald Rock

Contributions

1. Threading by Appointment (TAP):

= A concurrent programming model that
combines the convenience of automatic
stack management (threads) with the
efficiency of system call queueing (events).

2. A'TAP policy for traffic shaping system calls.

© C. Kirsch 20053

Threading by Appointment:

Mechanism

Example: Locking

A ; A A A

be iins locligs R suspénded resumes unloé:ks R
%IIIIIII _--------EthreadL

threadHE-.-......;........ i _
: : begins attempts locks R unlo¢ks R
: to lock R : :

© C. Kirsch 2005 4

Solutions

1. Solution: thread queueing

e with priority inheritance or similar
techniques if priorities are present.

2. Solution: system call queueing

= enables traffic shaping of system calls
(system call = packet).

© C. Kirsch 20053

Example: TAP Locking

A

begins loclfzs R suspénded resufmes unlociks R
%IIIIIIIIIE IllllllgthreadL

threadHE-Illllllléllllllll._illllll)
begins blocks locks R unlo¢ks R

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 6

System Call Queueing

Appointment

e ATAP thread must have an appointment betore
invoking a system call.

e When a TAP thread attempts to invoke a
system call, the thread is blocked until the time
of the appointment and only then gets to
invoke the system call.

e Appointments can be made by the thread and
the TAP runtime system (only the latter is
implemented).

© C. Kirsch 20053

Example: Appointment

A i A i A

beﬁiins loclés R unloé:ks R
- :’ H'EE NN NN .%

_ _ Appoil.%ltment _
. blocks blocks . blocks

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 2005 9

© C. Kirsch 2003

Running Thread

I0

© C. Kirsch 2003

Blocked Thread

II

© C. Kirsch 2003

Released Threa

12

© C. Kirsch 2003

Running Thread

I3

Thread

© C. Kirsch 20053

State Transitions

Reactor

Scheduler

14

Reactor

1. blocks thread upon attempt to invoke
system call.

2. releases thread to scheduler at begznning ot
appointment (in current implementation:
invokes system call on behalf of thread).

3. blocks thread upon return from system call.

4. releases thread to scheduler at end of
appointment.

© C. Kirsch 20053

15

Correctness

e We say a thread has broken its appointment if
the thread is not blocked at the beginning and
end of the appointment.

= |n our implementation, threads cannot break
appointments.

© C. Kirsch 20053

16

System Call Queueing

e The reactor maintains multiple queues of
system calls called calendars and determines the
exact order and time of system calls.

m Threading by Appointment enables
system call queueing

© C. Kirsch 20053

o

Observation

= Threading by Appointment is orthogonal to
automatic stack management, i.e., it might as
well be used in event-based systems.

© C. Kirsch 20053

I8

The TAP I/0O Subsystem

e The TAP I/O subsystem uses nonblocking
network calls and asynchronous disk calls.

= How does the subsystem map nonblocking
and asynchronous I/O calls to TAP?

© C. Kirsch 20053

20

Example: Disk Read

A I/0 subsystem reactor Ereleases E
submits fequest toi : : thread to _
beﬁms read from disk : : : continue
’ HE NN .%
Read#ps (S?ﬁ@%inent

blo;cks TAP Wr afprsh Qi | bloécks

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 21

Correctness

e We say a resource has broken its appointment
with a thread if the resource was not available
during the appointment.

= |n our implementation, resources cannot
break appointments.

© C. Kirsch 20053

22

Example: Network Read

A I/0 subsystem reactor releases E
: interestediin reading : : : thread to
beﬁ:ins : network Cepoll_ctl) . continue ;
- :’ EEEEEER .M
Né@w@lmi@ad '
Eﬁ{% g |
blocks ait blozcks
0 1 2 3 4 B 9 10

© C. Kirsch 2005 23

PL vs. OS

e TAP mechanism separates concurrency model
(PL) from implementation model (OS).

e TAP policies may focus on PL, OS, or both.

e PL example: we say a TAP policy is order-
preserving if it guarantees that the relative order
of system calls of different threads is preserved
under any system performance scenario (load,

speed, scheduler...).

e OS example: traffic shaping system calls.
© C. Kirsch 20053

24

Threading by Appointment:
Policy

TAP Policy

e ATAP policy consists of:
1. an appointment strategy.
2. an appointment c/ock.

e The appointment strategy determines the order
of appointments (izsertion into calendar).

e The appointment clock determines the /e of
appointments (deletzon from calendar).

© C. Kirsch 20053

26

When Make Appointments?

. order, duratlon reactor—determmed

E (Wbl’ih. ?(ontmuo:us TA%IBq{lcy) bloécks
R T St s AR ioie

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 2005 27

Continuous TAP Policy

e We say a TAP policy is continuous if it
guarantees that every TAP thread always has at
least one appointment (TAP threads with
multiple appointments are future work).

= At the end of an appointment, a new
appointment has to be made.

© C. Kirsch 20053

28

Multiple Calendars

e The reactor maintains multiple calendars for
network and disk (and memory, not
implemented yet).

m How does a TAP thread make an appointment
for a system call that it does not know yet?

© C. Kirsch 20053

£9

Commit Appointment

Comm1ts

beﬁiins blocks to locking R blocks loclés R blo?cks

:---------’:_?--------:

© C. Kirsch 20053 30

Predicting System Calls

1. Runtime System: dynamic analysis?

e our implementation: commit @ system call.

e enables POSIX-compliant interface.
2. Compiler: static analysis? e.g., Capriccio!

3. Programmer: new PL constructs?

© C. Kirsch 20053

31

Traftic Shaping System Calls

Trafhic Shaping...

e ...controls volume, throughput, and latency of
network traffic, using:

e queueing disciplines such as:

o the Jeaky-bucket algorithm (creates fixed
transmission rate on varying flows).

o the token bucket algorithm (allows bursts
while limiting average transmission rates).

e classification schemes: nteractive vs. bulk traffic.

© C. Kirsch 20053 33

Trafhic Shaping System Calls

e system call = packet

e appointment strategy + appointment clock =
queueing discipline

e thread behavior = classification scheme

© C. Kirsch 20053

34

Queueing Discipline

e Appointment strategy:

e three prioritized, classful queues called CPUj,
NET, and DISK.

e Appointment clock:

e ticks whenever all next-appointed threads are
blocked and their I/O is ready (thus broken

appointments are not possible).

e round-robin CPU, NET, and DISK (ratio!).

© C. Kirsch 20053

33

Classification Scheme

¢ Thread behavior:

e accept on network resets to highest priority.
e read/write on network/disk Jower priority:

m [mproves latency of interactive threads.

© C. Kirsch 20053

Latency

4.5e+06 T T T T T T T T T
’table_inc.txt> —+—
"table_dec.txt’
4e+06 | ’table_const.txt’ —— -
3.5e+06 3
3e+06 3
2.5e+06 3

2e+06

1.5e+06

1e+06

500000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

© C. Kirsch 2003

Throughput

TAP 100 threads

3PP ! ! ! ! !
3000 [+t s g S T O :
2500] (141D i i L AT I st _
2000
1500
fo e HIH e S T T :
s mingannd ATt RSO T R RN T T T]
U ey CRA BT TR **Xxxxxx aé% *x*%X%%%xx%xxx%xXX%Xxxxxyx*xxxxxx%xxx>
0 & 4
0 500 1000 1500 2000 2500 3000
"req_rate_TAP" —+— "stddev_rep_rate_TAP"
"con_rate_TAP" "resp_time_TAP" e -
"min_rep_rate_ TAP" ---x--- "net_io_TAP"
"avg_rep_rate_TAP" "errors_TAP"
"max_rep_rate TAP"

© C. Kirsch 2003

3500

3000

2500

2000

1500

1000

500

Throughput: NPTL

NPTL 100 threads

~~~~~~

R e SRR LT ’ ,,,,,,,,,,,,,,,, }K%%K’%XX/%x%%XXxX%%%,X<%*%%XXx%%%x%%%\x?,K%*-)K-)K\\/}K-X—_r

%

0 500 1000 1500 2000 2500 3000

"req_rate_NPTL" —+— "stddev_rep_rate_ NPTL"

"con_rate_ NPTL" "resp_time_NPTL" o -
"min_rep_rate_ NPTL" ---*--- "net_io_NPTL"
"avg_rep_rate_ NPTL" "errors_NPTL"

"max_rep_rate NPTL"

© C. Kirsch 2003

39



Thank you



