
Traffic Shaping System Calls
Using Threading by Appointment

Christoph Kirsch
University of Salzburg

Joint work with Harald Röck

© C. Kirsch 2005

Contributions

1. Threading by Appointment (TAP):

➡ A concurrent programming model that
combines the convenience of automatic
stack management (threads) with the
efficiency of system ca! queueing (events).

2. A TAP policy for traffic shaping system calls.

2

Threading by Appointment:
Mechanism

© C. Kirsch 2005

Example: Locking

0 1 2 3 4 5 6 7 8 9 10

Environmen#

Syste$

locks R
thread L

suspended resumes unlocks R

begins attempts
to lock R

thread H
locks R unlocks R

begins

4

© C. Kirsch 2005

Solutions

1. Solution: thread queueing

• with priority inheritance or similar
techniques if priorities are present.

2. Solution: system ca! queueing

➡ enables traffic shaping of system calls
(system call = packet).

5

© C. Kirsch 2005

Example: TAP Locking

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

locks R suspended resumes unlocks R

begins blocks locks R unlocks R

begins

6

thread L

thread H

System Call Queueing

© C. Kirsch 2005

Appointment

• A TAP thread must have an appointment before
invoking a system call.

• When a TAP thread attempts to invoke a
system call, the thread is blocked until the time
of the appointment and only then gets to
invoke the system call.

• Appointments can be made by the thread and
the TAP runtime system (only the latter is
implemented).

8

© C. Kirsch 2005

Example: Appointment

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

unlocks Rbegins locks R

9

blocksblocks blocks

Appointment

© C. Kirsch 2005

Running Thread

10

© C. Kirsch 2005

Blocked Thread

11

© C. Kirsch 2005

Released Thread

12

© C. Kirsch 2005

Running Thread

13

© C. Kirsch 2005

State Transitions

Reactor

Scheduler

Thread

14

© C. Kirsch 2005

Reactor

15

1. blocks thread upon attempt to invoke
system call.

2. releases thread to scheduler at beginning of
appointment (in current implementation:
invokes system call on behalf of thread).

3. blocks thread upon return from system call.

4. releases thread to scheduler at end of
appointment.

© C. Kirsch 2005

Correctness

• We say a thread has broken its appointment if
the thread is not blocked at the beginning and
end of the appointment.

➡ In our implementation, threads cannot break
appointments.

16

© C. Kirsch 2005

System Call Queueing

• The reactor maintains multiple queues of
system calls called calendars and determines the
exact order and time of system calls.

➡ Threading by Appointment enables
system ca! queueing

17

© C. Kirsch 2005

Observation

➡ Threading by Appointment is orthogonal to
automatic stack management, i.e., it might as
well be used in event-based systems.

18

I/O

© C. Kirsch 2005

The TAP I/O Subsystem

• The TAP I/O subsystem uses nonblocking
network calls and asynchronous disk calls.

➡ How does the subsystem map nonblocking
and asynchronous I/O calls to TAP?

20

© C. Kirsch 2005

Example: Disk Read

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

reactor releases
thread to
continuebegins

I/O subsystem
submits request to

read from disk

21

blocksblocks

kernel reads
asynchronously

from diskTAP Wrapper Call
Read Appointment

© C. Kirsch 2005

Correctness

• We say a resource has broken its appointment
with a thread if the resource was not available
during the appointment.

➡ In our implementation, resources cannot
break appointments.

22

© C. Kirsch 2005

I/O subsystem
reads nonblocking
(epoll_wait)

Example: Network Read

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

reactor releases
thread to
continuebegins

23

blocksblocks

I/O subsystem
interested in reading
network (epoll_ctl)

Network Read
Appointment

© C. Kirsch 2005

PL vs. OS

24

• TAP mechanism separates concurrency model
(PL) from implementation model (OS).

• TAP policies may focus on PL, OS, or both.

• PL example: we say a TAP policy is order-
preserving if it guarantees that the relative order
of system calls of different threads is preserved
under any system performance scenario (load,
speed, scheduler...).

• OS example: traffic shaping system calls.

Threading by Appointment:
Policy

© C. Kirsch 2005

TAP Policy

• A TAP policy consists of:

1. an appointment strategy.

2. an appointment clock.

• The appointment strategy determines the order
of appointments (insertion into calendar).

• The appointment clock determines the time of
appointments (deletion from calendar).

26

© C. Kirsch 2005

When Make Appointments?

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

unlocks Rbegins locks R

27

blocksblocks blocks

order, duration reactor-determined
(with continuous TAP policy)

© C. Kirsch 2005

Continuous TAP Policy

28

• We say a TAP policy is continuous if it
guarantees that every TAP thread always has at
least one appointment (TAP threads with
multiple appointments are future work).

➡ At the end of an appointment, a new
appointment has to be made.

© C. Kirsch 2005

Multiple Calendars

• The reactor maintains multiple calendars for
network and disk (and memory, not
implemented yet).

➡ How does a TAP thread make an appointment
for a system call that it does not know yet?

29

© C. Kirsch 2005

Commit Appointment

0 1 2 3 4 5 6 7 8 9 10

Reactor

Thread

blocks blocks locks Rbegins
commits

to locking R blocks

30

© C. Kirsch 2005

Predicting System Calls

31

1. Runtime System: dynamic analysis?

• our implementation: commit @ system call.

• enables POSIX-compliant interface.

2. Compiler: static analysis? e.g., Capriccio!

3. Programmer: new PL constructs?

Traffic Shaping System Calls

© C. Kirsch 2005

Traffic Shaping...

• ...controls volume, throughput, and latency of
network traffic, using:

• queueing disciplines such as:

• the leaky-bucket algorithm (creates fixed
transmission rate on varying flows).

• the token bucket algorithm (allows bursts
while limiting average transmission rates).

• classification schemes: interactive vs. bulk traffic.
33

© C. Kirsch 2005

Traffic Shaping System Calls

• system call = packet

• appointment strategy + appointment clock =
queueing discipline

• thread behavior = classification scheme

34

© C. Kirsch 2005

Queueing Discipline
• Appointment strategy:

• three prioritized, classful queues called CPU,
NET, and DISK.

• Appointment clock:

• ticks whenever all next-appointed threads are
blocked and their I/O is ready (thus broken
appointments are not possible).

• round-robin CPU, NET, and DISK (ratio!).
35

© C. Kirsch 2005

Classification Scheme

• Thread behavior:

• accept on network resets to highest priority.

• read/write on network/disk lower priority.

➡ Improves latency of interactive threads.

36

© C. Kirsch 2005

Latency

37

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

’table_inc.txt’
’table_dec.txt’

’table_const.txt’

© C. Kirsch 2005

Throughput

38

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

TAP 100 threads

"req_rate_TAP"
"con_rate_TAP"

"min_rep_rate_TAP"
"avg_rep_rate_TAP"
"max_rep_rate_TAP"

"stddev_rep_rate_TAP"
"resp_time_TAP"

"net_io_TAP"
"errors_TAP"

© C. Kirsch 2005

Throughput: NPTL

39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

NPTL 100 threads

"req_rate_NPTL"
"con_rate_NPTL"

"min_rep_rate_NPTL"
"avg_rep_rate_NPTL"
"max_rep_rate_NPTL"

"stddev_rep_rate_NPTL"
"resp_time_NPTL"

"net_io_NPTL"
"errors_NPTL"

Thank you

