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Contributions

1. Threading by Appointment (TAP):

= A concurrent programming model that
combines the convenience of automatic
stack management (threads) with the
efficiency of system call queueing (events).

2. A'TAP policy for traffic shaping system calls.
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Threading by Appointment:

Mechanism



Example: Locking

A ; A A A

be iins locligs R suspénded resumes unloé:ks R
%IIIIIII _--------EthreadL

threadHE-.-......;........ i _
: : begins attempts locks R unlo¢ks R
: to lock R : :
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Solutions

1. Solution: thread queueing

e with priority inheritance or similar
techniques if priorities are present.

2. Solution: system call queueing

= enables traffic shaping of system calls
(system call = packet).
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Example: TAP Locking

A

begins loclfzs R suspénded resufmes unlociks R
%IIIIIIIIIE IllllllgthreadL

threadHE-Illllllléllllllll._illllll )
begins  blocks  locks R unlo¢ks R
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System Call Queueing



Appointment

e ATAP thread must have an appointment betore
invoking a system call.

e When a TAP thread attempts to invoke a
system call, the thread is blocked until the time
of the appointment and only then gets to
invoke the system call.

e Appointments can be made by the thread and
the TAP runtime system (only the latter is
implemented).
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Example: Appointment

A i A i A

beﬁiins loclés R unloé:ks R
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_ _ Appoil.%ltment _
. blocks blocks . blocks
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Running Thread
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Blocked Thread
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Released Threa
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Thread
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State Transitions

Reactor

Scheduler
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Reactor

1. blocks thread upon attempt to invoke
system call.

2. releases thread to scheduler at begznning ot
appointment (in current implementation:
invokes system call on behalf of thread).

3. blocks thread upon return from system call.

4. releases thread to scheduler at end of
appointment.
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Correctness

e We say a thread has broken its appointment if
the thread is not blocked at the beginning and
end of the appointment.

= |n our implementation, threads cannot break
appointments.
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System Call Queueing

e The reactor maintains multiple queues of
system calls called calendars and determines the
exact order and time of system calls.

m Threading by Appointment enables
system call queueing
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Observation

= Threading by Appointment is orthogonal to
automatic stack management, i.e., it might as
well be used in event-based systems.
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The TAP I/0O Subsystem

e The TAP I/O subsystem uses nonblocking
network calls and asynchronous disk calls.

= How does the subsystem map nonblocking
and asynchronous I/O calls to TAP?
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Example: Disk Read

A I/0 subsystem reactor Ereleases E
submits fequest toi : :  thread to _
beﬁms read from disk : : : continue
’ HE NN .%
Read#ps (S?ﬁ@%inent

blo;cks TAP Wr afprsh Qi | bloécks

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 21



Correctness

e We say a resource has broken its appointment
with a thread if the resource was not available
during the appointment.

= |n our implementation, resources cannot
break appointments.
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Example: Network Read

A I/0 subsystem reactor releases E
: interestediin reading : : : thread to
beﬁ:ins : network Cepoll_ctl) . continue ;
- :’ EEEEEER .M
Né@w@lmi@ad '
Eﬁ{% g |
blocks ait blozcks
0 1 2 3 4 B 9 10
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PL vs. OS

e TAP mechanism separates concurrency model
(PL) from implementation model (OS).

e TAP policies may focus on PL, OS, or both.

e PL example: we say a TAP policy is order-
preserving if it guarantees that the relative order
of system calls of different threads is preserved
under any system performance scenario (load,

speed, scheduler...).

e OS example: traffic shaping system calls.
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Threading by Appointment:
Policy



TAP Policy

e ATAP policy consists of:
1. an appointment strategy.
2. an appointment c/ock.

e The appointment strategy determines the order
of appointments (izsertion into calendar).

e The appointment clock determines the /e of
appointments (deletzon from calendar).
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When Make Appointments?

. order, duratlon reactor—determmed

E (Wbl’ih. ?(ontmuo:us TA%IBq{lcy) bloécks
R T St s AR ioie
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Continuous TAP Policy

e We say a TAP policy is continuous if it
guarantees that every TAP thread always has at
least one appointment (TAP threads with
multiple appointments are future work).

= At the end of an appointment, a new
appointment has to be made.
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Multiple Calendars

e The reactor maintains multiple calendars for
network and disk (and memory, not
implemented yet).

m How does a TAP thread make an appointment
for a system call that it does not know yet?
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Commit Appointment

Comm1ts

beﬁiins blocks to locking R blocks loclés R blo?cks

:---------’:_?--------:
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Predicting System Calls

1. Runtime System: dynamic analysis?

e our implementation: commit @ system call.

e enables POSIX-compliant interface.
2. Compiler: static analysis? e.g., Capriccio!

3. Programmer: new PL constructs?
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Traftic Shaping System Calls



Trafhic Shaping...

e ...controls volume, throughput, and latency of
network traffic, using:

e queueing disciplines such as:

o the Jeaky-bucket algorithm (creates fixed
transmission rate on varying flows).

o the token bucket algorithm (allows bursts
while limiting average transmission rates).

e classification schemes: nteractive vs. bulk traffic.
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Trafhic Shaping System Calls

e system call = packet

e appointment strategy + appointment clock =
queueing discipline

e thread behavior = classification scheme
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Queueing Discipline

e Appointment strategy:

e three prioritized, classful queues called CPUj,
NET, and DISK.

e Appointment clock:

e ticks whenever all next-appointed threads are
blocked and their I/O is ready (thus broken

appointments are not possible).

e round-robin CPU, NET, and DISK (ratio!).
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Classification Scheme

¢ Thread behavior:

e accept on network resets to highest priority.
e read/write on network/disk Jower priority:

m [mproves latency of interactive threads.
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Latency
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Throughput

TAP 100 threads
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Thank you



